世面上除了使用mahout做推荐系统,还有别的吗? - 知乎

标签: | 发表时间:2018-08-02 13:32 | 作者:
出处:https://www.zhihu.com
需要看应用场景(基于内容的推荐引擎或协同过滤)、语言(Python、Java/Scala等)以及方案完整度(完整系统或库)。

1、基于内容的推荐
Python的话,推荐考察一下gensim: gensim: Topic modelling for humans
Java的话,可以考虑easyrec: easyrec :: open source recommendation engine
另外可以考虑类似solr或Elasticsearch的MoreLikeThis或直接基于lucene term vector方案(例如semanticvectors https://github.com/semanticvectors/semanticvectors)。

2、协同过滤
除了采用mahout外,目前我知道很多公司推荐引擎都转向spark MLLib(底层算法可以采用mahout)或GraphLab。

有几个完整解决方案的项目推荐考察一下(prediction、seldon都是基于spark的):
prediction: PredictionIO Open Source Machine Learning Server
seldon: Seldon - Open Source Machine Learning for Enterprise
oryx(以前叫Myrrix): cloudera/oryx: Simple real-time large-scale machine learning infrastructure.

相关 [mahout 推荐系统 知乎] 推荐:

世面上除了使用mahout做推荐系统,还有别的吗? - 知乎

- -
需要看应用场景(基于内容的推荐引擎或协同过滤)、语言(Python、Java/Scala等)以及方案完整度(完整系统或库). Python的话,推荐考察一下gensim:. Java的话,可以考虑easyrec:. 另外可以考虑类似solr或Elasticsearch的MoreLikeThis或直接基于lucene term vector方案(例如semanticvectors.

基于Mahout的电影推荐系统

- - CSDN博客推荐文章
Apache Mahout 是 Apache Software Foundation(ASF) 旗下的一个开源项目,提供一些可扩展的机器学习领域经典算法的实现,旨在帮助开发人员更加方便快捷地创建智能应用程序. 经典算法包括聚类、分类、协同过滤、进化编程等等,并且,在 Mahout 中还加入了对Apache Hadoop的支持,使这些算法可以更高效的运行在云计算环境中.

[转]mahout in action 中文翻译 第2章 推荐系统简介

- - 小鸥的博客
评价一个引擎的准确率和召回率. 在真实数据集:GroupLens 上评价推荐系统. 我们每天都会对喜欢的、不喜欢的、甚至不关心的事情有很多观点. 你在收音机上听歌,因为它容易记住或者因为听起来可怕而关注它 -- 又或者根本不去关注它. 同样的事情有可能发生在T恤衫,色拉,发型,滑雪胜地,面孔,电视节目.

使用Mahout搭建推荐系统之入门篇2-玩转你的数据1

- - 互联网 - ITeye博客
用意: 搞推荐系统或者数据挖掘的, 对数据要绝对的敏感和熟悉, 并且热爱你的数据. 分析数据既要用统计分析那一套,又要熟悉业务发掘有趣的特征(feature). 后者有意思的多,但是因为我业务做的不多,还不太熟悉, 跪求大牛们分析业务经历. 听豆瓣上的大神"懒惰啊我"说过,有一个Nokia的比赛,有一个团队直接用陀螺仪参数就发现了性别分布,因为男生手机都放在 口袋里, 而女生往往放在包里面.

想学习推荐系统,如何从小白成为高手? - 知乎

- -
同在学习推荐算法,大概介绍一下我自己规划的推荐算法学习轨迹(还在慢慢实践中,好长时间了,捂脸...). 首先,看完了推荐系统实战的话,应该大概了解了大部分的推荐算法. 那我觉得看完了书,应该有必要再从宏观上再来了解一下推荐系统这个研究领域的研究现状,包括研究领域目前有的挑战,比如冷启动问题,大规模矩阵分解问题,增量模型计算问题等等,包括目前热门的研究方向,比如基于LBS、社交网络等等的推荐.

Mahout介绍

- - 互联网 - ITeye博客
Mahout 是机器学习和数据挖掘的一个分布式框架,区别于其他的开源数据挖掘软件,它是基于hadoop之上的; 所以hadoop的优势就是Mahout的优势. http://mahout.apache.org/ 上说的Scalable就是指hadoop的可扩展性. Mahout用map-reduce实现了部分数据挖掘算法,解决了并行挖掘的问题.

mahout部署实践

- - CSDN博客云计算推荐文章
一 下载mahout并解压. JAVA_HOME mahout运行需指定jdk的目录. MAHOUT_JAVA_HOME指定此变量可覆盖JAVA_HOME值. HADOOP_HOME  如果配置,则在hadoop分布式平台上运行,否则单机运行. HADOOP_CONF_DIR指定hadoop的配置文件目录.

Min-Hash和推荐系统

- - xlvector - Recommender System
前几年看Google News Recommendation的那篇Paper,对里面提到的MinHash的算法基本没有注意,因为之前的习惯都是只注意论文的模型那块,至于怎么优化模型一般都只是扫一眼. 不过最近看了大量的Google Paper,发现Google在实现一个算法方面确实有很多独到之处. 其实,Min-Hash是LSH(Locality Sensitive Hash)的一种,我之前对LSH的了解仅仅限于知道它能把两个相似的东西Hash成两个汉明距离接近的2进制数.

推荐系统实战

- - 博客园_首页
推荐算法:基于特征的推荐算法. 推荐算法准确度度量公式:. 其中,R(u)表示对用户推荐的N个物品,T(u)表示用户u在测试集上喜欢的物品集合. 集合相似度度量公式(N维向量的距离度量公式):. 其中,N(u)表示用户u有过正反馈的物品集合. 其中,S(u,k)表示和用户u兴趣最接近的K个用户集合;N(i)表示对物品i有过正反馈的用户集合;w(u,v)表示用户u和用户v的兴趣相似度;r(v,i)表示用户v对物品i的兴趣.

推荐系统杂谈

- - 后端技术杂谈 | 飒然Hang
推荐系统是近些年非常火的技术,不管是电商类软件还是新闻类app,都号称有精准的推荐系统能给你推送你最感兴趣的内容. 现象级的资讯类app“今日头条”就得益于此成为了势头非常猛的一款产品. 本文就针对推荐系统讲述一些相关概念和实践经验. 首先需要明确的就是推荐系统的目标,一般来说不外乎以下几个:. 用户满意性:首当其冲的,推荐系统主要就是为了满足用户的需求,因此准确率是评判一个推荐系统好坏的最关键指标.