在成为国企和被收购之外,AI芯片公司的另一种活法

标签: 国企 收购 ai | 发表时间:2018-09-14 20:51 | 作者:四月
出处:https://www.jiqizhixin.com/

撰文 | 四月

绑定国企资源,还是被巨头收购?亦或者还有没有一套更为主流的AI芯片公司生存之道?

更加多元化,更接地气的。

「去年底iPhone X出来之后,客户都在问结构光方案能不能做。但是当下,大家问得最多的是『有没有结构光的替代方案?』」,耐能创始人刘峻诚谈起过去一年手机芯片市场的诉求变化。

下半年以来,创投圈里关于「AI 芯片」的议题逐步降温,资本热捧和媒体光环散去,芯片创业的本质浮出水面。

很显然,并不是所有公司都自信如寒武纪,自诞生之日就绑定国企资源,拿下华为的长期订单;也不是所有团队都幸运如深鉴科技,公司成立两年便深受资本厚爱,顺利以不错的价格「出售」。

在以上两类稀缺案例之外,更多的是一般创业团队的生存之道——必须更加多元化,更加接地气。Kneron(以下简称耐能)就是这第三类公司的典型之一。

2015 年,耐能在美国圣地亚哥创立,核心团队来自于前高通等半导体公司的华人工程师,聚焦在终端 AI 芯片解决方案,主攻智能手机、智能安防、智能家居等领域。公司在 2017 年、2018 年相继完成两轮融资,其背后的投资方包含阿里巴巴、高通、红杉资本、李嘉诚旗下的维港投资等。

近期,机器之心与耐能创始人兼 CEO 刘峻诚对话,探寻产品迭代背后更接地气的考量,主流客户与市场在过去一年的诉求变化,以及在 RSIC-V 架构、7nm 工艺等行业热点影响下的趋势走向,以窥探 AI 芯片产业整体的暗流和潮向。

以下为机器之心与创始人刘峻诚的对话整理。

NPU IP 不一定要塞进主核芯片,芯片性能提升的关键还是在于 CPU、GPU、NPU 多核的协调性。

机器之心:第二代 IP 系列中运算力最高为 5.8 TOPS/s,如何理解? 

刘峻诚:5.8 TOPS/s 是高效能版本 KDP720 在 28 纳米制程、600 MHz、8bit fixed points 下的效能表现。此外,我们还有超低功耗版 KDP 320、标准版 KDP 520。 

机器之心:距离上一代 IP 不到半年,产品迭代节奏很快。 

刘峻诚:产品线会保证两年内的规划。这款产品一年前就在布局,性能不断迭代。当出现较大性能突破,以及获得核心客户的认可之后就会发布出来。这代产品主打偏高阶手机市场和安防市场。下代产品在功耗上会有更大提升。 

机器之心:今年已经出现 7 纳米制程,效能比 5Tops/watt 的 NPU IP;对比之下,你们的效能如何?

刘峻诚:不同制程会影响芯片的运算能力表现,我们二代 KDP720 在 28nm 制程下的每瓦效能表现预估为 13.17 TOPS/W。

机器之心:有没有考虑过更高的制程工艺? 

刘峻诚:我们提供的 IP 架构默认以 28nm 制程为主,参考数据也是在 28nm 纳米制程下的表现。 

团队没有盲目追究高阶制程,主要是考虑到成本和性能的综合因素。在我们主要聚焦的三大领域里:手机领域,虽然当下主流芯片厂商的主制程已经提升至 10nm 或以下,但协处理器仍可以使用 28nm;安防领域则以 28nm 为主,16nm 为辅;在 IoT 领域,主要以 40nm、65nm 为主。

机器之心:你们更偏向协处理器的方式?

刘峻诚:是的。我们和大厂合作主要采用协处理器与主核处理器协同的方式。该模式和谷歌 Piexl 手机芯片模式类似,比如,针对机器学习与图形处理需求专门定制一款「协处理器」Pixel Visual Core,专门用于加速相机等特定应用。 

机器之心:该模式和将 IP 绑定在主核芯片的模式有什么不同? 

刘峻诚:协处理器和主处理器可以采用不同制程,以降低主芯片的成本,因为协处理器不需要用到那么高的制程。将 IP 绑定在主核芯片因为采用同一套制程必然加大芯片成本。NPU IP 不一定要塞进主核芯片,芯片性能提升的关键还是在于 CPU、GPU、NPU 多核的协调性。

机器之心:如何看待 7nm 制程之争? 

芯片公司和手机公司的 IC 设计思路不同。比如,苹果和华为都是自研芯片,其模式和严格意义上的芯片公司不同。手机公司设计芯片更大动力在于升级手机性能,而芯片公司面向更广的客户群体,必须将成本和出货量考虑进去。

7nm 会有一个黄金交叉的时间点,在推行一年、加持的模块更丰富之后,性价比或许才会比较被手机公司接受。

机器之心:除了性能参数,新品还有哪些升级?

刘峻诚:在此之前,我们通过 3*3 矩阵重构就能覆盖大量神经网络。不过,过去一年又冒出了很多比较受欢迎的机构,比如轻量级的 MobileNet、YOLO、Tiny YOLO 等、以及一些很巧思的特异神经网络,部分采用的是 1*1 的矩阵,再用 3*3 矩阵去适配就浪费了。

面对这些轻量级矩阵,可以采用交错式运算架构去协调。用普通制程达到高性能表现能够满足客户的性价比要求。

机器之心:可重构算法主要应用在哪些层面?

刘峻诚:可重构主要面向两个层面,一个是 Convolution Filter 层面的重构,即将 5*5、7*7 等不同大小型矩阵的卷积滤波器分解为 3*3 或者更小的矩阵,因为在 CNN 模型中 3*3 矩阵是最为常见的模型。今年我们已经针对这项技术进行多个地区的专利保护。

第二个是动态可调整定点运算的重构,针对不同的精度/浮点数的运算层进行动态运算的重组,以达到不同精度值要求与不同浮点数的运算进行精确匹配,更加高效地利用处理器性能进行并行交错计算。此外,还包括针对不同模型的转移学习和压缩,保持尽可能多的 MAC 以提高平均性能等。

现在很多创业公司会更加聚焦在优势市场,而不是铺大盘子。因为创业公司需要聚焦资源才能打开市场。

机器之心:手机 AI 芯片市场过去一年有哪些变化?

刘峻诚:手机是我们布局最深的领域,这一年市场诉求变化很快。去年 iPhone X 发布之后,我们认为 3D 结构光应该是大势所趋。所以在一代产品中就嵌入了人脸识别等 SDK。去年底iPhone X出来之后,客户都在问结构光方案能不能做。

但是当下,大家问得最多的是「有没有结构光的替代方案?」

现在看来,结构光方案接受度并没有想象中那么高。我们分析,一是技术没跟上,二是产品方案太贵。所以我们开始考虑 TOF、双摄等更多方案,二代产品中三种软件方案都能兼容。

方案既面向集成芯片厂商,也会面向光学模组厂商。因为人脸信息数据在主核芯片上跑效果仍然不是很理想,一是安全链路层空间限制,二是计算量较大。 

机器之心:传统安防厂商对于 AI 的态度是否有所转变? 

刘峻诚:安防市场注重通用性,而不是性能的精简。过去,AI 算法和识别应用主要放到云端,所以安防厂商对于 AI 算法和应用的接受度的确不高。

现在新的摄像头会需要加入一部分预处理的功能,比如黑名单等。所以有一定的需求量了。主要针对一些需要架设新摄像头的新市场,比如一些地方政府的智慧城市工程等;而不是说现有的存量市场来进行摄像头的更新换代,这个动力仍然不是很大。

机器之心:开源指令集 RSIC-V 的关注越来越高,可能带来哪些变量? 

刘峻诚:RSIC-V 可能会覆盖到一部分到通用性的市场,比如安防、车载等。越通用的芯片,就容易受到 RSIC 的冲击。

不过现在各类芯片功效的界限正逐渐模糊。专用芯片通用性越强,可能就会接近 DSP 或者 GPU;而 DSP 定制化程度越高,就越接近 ASIC、AI 芯片。 

机器之心:从多起并购案中能看到行业整合趋势开始显现。 

刘峻诚:一是行业很热,即使创业团队缺少很强的营利能力,但在技术上的强创新仍然能够受到价值肯定。但是 AI 算法很大一部分创新仍然停留在介于硬件和软件层面之间的 SDK,这样的团队在落地和实战考验上会遇到瓶颈。

第二也反应出现实问题——没有差异化的产品路会很难走。比如,新的架构出现可能就会挤压市场,RSIC 对于安防市场的冲击我们也可能会遇到。

能够看到的是,现在很多创业公司会更加聚焦在优势市场,而不是铺大盘子了。因为创业规模的团队需要足够聚焦资源才能打开市场。

相关 [国企 收购 ai] 推荐:

在成为国企和被收购之外,AI芯片公司的另一种活法

- - 机器之心
亦或者还有没有一套更为主流的AI芯片公司生存之道. 「去年底iPhone X出来之后,客户都在问结构光方案能不能做. 但是当下,大家问得最多的是『有没有结构光的替代方案. 』」,耐能创始人刘峻诚谈起过去一年手机芯片市场的诉求变化. 下半年以来,创投圈里关于「AI 芯片」的议题逐步降温,资本热捧和媒体光环散去,芯片创业的本质浮出水面.

AI vs AI--当AI与自己聊天

- Tim - Solidot
Shawn the R0ck 写道 "最烦人的事情之一莫过于被强迫与一个白痴对话. 但当你发现你最讨厌与之交谈的白痴其实就是你自己的基于人工智能程序的拷贝...康奈尔创造性机器实验室决定看看当AI尝试跟自己交谈会发生什么. 他们的健谈的AI程序Cleverbot与自己进行文本交互,之后朗读出文本并且显示到视频中.

贪吃蛇AI挑战赛第二季

- 温柔一刀 - 黑客志
如果你对这个活动感兴趣,可以先从这里开始,编写一个AI程序,然后将你的AI程序以及你对平台的改进建议发送到jin.cai20#gmail.com,主办方将会从中选择12名选手参加6月24到25持续一个周末的编程派对,并提供往返交通及住宿费用,下面是活动的详情:. 时间: June 24th – June 26th *.

AI 政策引发失业担忧

- - 最新更新 – Solidot
政府智库——中国发展研究基金会和红杉中国的报告 显示,中国出口制造业省份浙江、江苏和广东的几家公司在这三年内因自动化削减了 30% 至 40% 的劳动力. 北京正在实施雄心勃勃的政策以升级制造技术. 官方媒体对包括人工智能领域在内的政府发展目标的报道都集中在积极因素上. 然而,有关当局悄然对此类政策导致的裁员表示了担忧.

与其迷恋AI 不如“摸摸”这些开源平台|AI科技评论周刊

- - 雷锋网
自Open AI的成立把AI平台的开源推向高潮后,Google,Facebook,微软,Twitter等公司也“半推半就” 地踏上了自家平台的开源之路,以此来吸引学术界, 工业界的研究人员,让他们更多地分享自己的研究成果. 不管这些巨头的所为(公开分享软件和硬件设计),是为了加速人工智能行业的整体发展进度的初心,还是出于应对竞争对手的被迫之举,对于那些迷恋AI的人来说,都是一件好事.

5天内,Google和百度各自发表AI计划,AI时代真的要来了

- - 今日话题 - 雪球
当$谷歌(GOOG)$ 去年提出要从“Mobile First”转向“AI First”,我就在想这会不会影响今年Google I/O的走向. 果然,上周的Google I/O 2017开发者大会上,“劈柴哥”就强调了这一点,然后全程围绕AI展开. 虽说如此,但其实Google只拿出了Google Lens这一个新玩意,其他基本上都是把Assistant、Home、Photos等前几年I/O的亮点产品拿出来冷饭热炒.

人工智能复杂的商业需求,正促使博弈 AI 的崛起 | AI大师圆桌会

- - 钛媒体:网罗天下创新事
卡耐基梅隆大学计算机系教授、德扑AI之父 Tuomas Sandholm. “人工智能时代,针对机器的算法是机器学习,针对人类的算法是博弈论. ”这是清华大学交叉信息研究院青年千人助理教授、博士生导师、计算经济学研究室主任唐平中,在2017年7月20日钛媒体与杉数科技联合举办的 “AI大师圆桌会之AI时代的博弈与行为分析”活动上提出的观点.

爱艾未未 -Love Ai Weiwei: 阿飞姑娘:被喝茶

- 立里 - loveaiww.blogspot.com
今天在今日美术馆正在采访陈丹青. 我说,请等等,请给我一点时间和他沟通. 我说,麻烦你找一个帅一点的人来跟我说话. 对方在电话里笑;我特别想认识你. 我走时,陈丹青用力拥抱了一下我. 我有点害羞起来,歪歪扭扭罗圈腿往外走. 他一直送到门口,在后面大笑:走路这么怪. 我递上杂志名片,他们惊讶说,你不是唱歌的吗.

能通过读说明书来学习的AI

- 大宝PKU - 煎蛋
读说明书是学习怎样使用了物品最好途径,尽管大家的习惯一般都是拿起来先试一试,当出了问题之后才急急忙忙去翻看使用说明书. 现在科学家们正试图让机器也能够通过阅读使用说明书来学习,而且他们成功了. MIT计算机科学和人工智能研究中心的研究员们弄出来的两台电脑,一台能够从微软的网站上学习怎样在Windows系统环境中安装软件,另外一台电脑则在通读游戏说明书,并且联系上下文进行理解的过程中学会了如何玩……文明II.

AI能根据625像素判断性别

- Mathack - Solidot
西班牙研究人员开发出一套系统,能实时分析视频信号,根据25x25像素的面部图像判断性别. 这项研究证明了625像素包含了判断性别的足够信息. 新的算法未来可内置于设备中,通过收集观众的人口统计信息测量电视或广告的观众群,或者用于购物中心、商店、银行或任何摄像头获取人口数据的场所.