HBase统计表行数(RowCount)的四种方法_Abysscarry的博客-CSDN博客

标签: | 发表时间:2020-02-09 20:32 | 作者:
出处:https://blog.csdn.net

背景:
对于其他数据存储系统来说,统计表的行数是再基本不过的操作了,一般实现都非常简单;但对于HBase这种key-value存储结构的列式数据库,统计 RowCount的方法却有好几种不同的花样,并且 执行效率差别巨大!下面来研究下吧~


测试集群:HBase1.2.0 - CDH5.13.0 四台服务器

注:以下4种方法效率依次提高


一、hbase-shell的count命令

这是最简单直接的操作,但是 执行效率非常低,适用于 百万级以下的小表RowCount统计!
在这里插入图片描述

      hbase> count 'ns1:t1'
 hbase> count 't1'
 hbase> count 't1', INTERVAL => 100000
 hbase> count 't1', CACHE => 1000
 hbase> count 't1', INTERVAL => 10, CACHE => 1000

此操作可能需要很长时间,来运行计数MapReduce作业。默认情况下每1000行显示当前计数,计数间隔可自行指定。

默认情况下在计数扫描上启用缓存,默认缓存大小为10行。

行数为 3000W 的表测试结果:

      hbase(main):001:0>count'sda_crm_calls20180102'

在这里插入图片描述
默认INTERVAL为1000行时花了80分钟。。

      hbase(main):001:0>count'sda_crm_calls20180102',INTERVAL=>1000000

在这里插入图片描述

INTERVAL为1000000行时花了130分钟。。


二、scan方式设置过滤器循环计数(JAVA实现)

这种方式是通过添加 FirstKeyOnlyFilter过滤器的scan进行全表扫描,循环计数RowCount, 速度较慢!但快于第一种count方式!

基本代码如下:

public void rowCountByScanFilter(String tablename){
    long rowCount = 0;
    try {
        //计时
        StopWatch stopWatch = new StopWatch();
        stopWatch.start();

        TableName name=TableName.valueOf(tablename);
        //connection为类静态变量
        Table table = connection.getTable(name);
        Scan scan = new Scan();
        //FirstKeyOnlyFilter只会取得每行数据的第一个kv,提高count速度
        scan.setFilter(new FirstKeyOnlyFilter());
        
        ResultScanner rs = table.getScanner(scan);
        for (Result result : rs) {
            rowCount += result.size();
        }

        stopWatch.stop();
        System.out.println("RowCount: " + rowCount);
        System.out.println("统计耗时:" +stopWatch.getTotalTimeMillis());
    } catch (Throwable e) {
        e.printStackTrace();
    }
}
   

在这里插入图片描述

耗时45分钟!


三、利用hbase.RowCounter包执行MR任务

这种方式 效率非常高!利用了hbase jar中自带的统计行数的工具类!

通过 $HBASE_HOME/bin/hbase命令执行:

      [[email protected]~]# hbase org.apache.hadoop.hbase.mapreduce.RowCounter'sda_crm_calls20180102'

在这里插入图片描述
在这里插入图片描述

耗时 1m40s,速度较上面两种有了质的飞跃!


四、利用HBase协处理器Coprocessor(JAVA实现)

这是我目前发现 效率最高的RowCount统计方式,利用了HBase高级特性: 协处理器

我们往往使用过滤器来减少服务器端通过网络返回到客户端的数据量。但HBase中还有一些特性让用户甚至可以 把一部分计算也移动到数据的存放端,那就是协处理器 (coprocessor)。

协处理器简介:

(节选自《HBase权威指南》)

使用客户端API,配合筛选机制,例如,使用过滤器或限制列族的范围,都可以控制被返回到客户端的数据量。如果可以更进一步优化会更好,例如, 数据的处理流程直接放到服务器端执行,然后仅返回一个小的处理结果集。这类似于一个小型的MapReduce框架,该框架将工作分发到整个集群。

协处理器 允许用户在region服务器上运行自己的代码,更准确地说是 允许用户执行region级的操作,并且可以使用与RDBMS中触发器(trigger)类似的功能。在客户端,用户不用关心操作具体在哪里执行,HBase的分布式框架会帮助用户把这些工作变得透明。

实现代码:

public void rowCountByCoprocessor(String tablename){
    try {
        //提前创建connection和conf
        Admin admin = connection.getAdmin();
        TableName name=TableName.valueOf(tablename);
        //先disable表,添加协处理器后再enable表
        admin.disableTable(name);
        HTableDescriptor descriptor = admin.getTableDescriptor(name);
        String coprocessorClass = "org.apache.hadoop.hbase.coprocessor.AggregateImplementation";
        if (! descriptor.hasCoprocessor(coprocessorClass)) {
            descriptor.addCoprocessor(coprocessorClass);
        }
        admin.modifyTable(name, descriptor);
        admin.enableTable(name);

        //计时
        StopWatch stopWatch = new StopWatch();
        stopWatch.start();

        Scan scan = new Scan();
        AggregationClient aggregationClient = new AggregationClient(conf);

        System.out.println("RowCount: " + aggregationClient.rowCount(name, new LongColumnInterpreter(), scan));
        stopWatch.stop();
        System.out.println("统计耗时:" +stopWatch.getTotalTimeMillis());
    } catch (Throwable e) {
        e.printStackTrace();
    }
}
   

在这里插入图片描述
发现只花了 23秒 就统计完成!

为什么利用协处理器后速度会如此之快?

Table注册了Coprocessor之后,在执行AggregationClient的时候,会将RowCount分散到Table的每一个Region上,Region内RowCount的计算,是通过RPC执行调用接口,由Region对应的RegionServer执行InternalScanner进行的。

因此,性能的提升有两点原因:

1. 分布式统计。将原来客户端按照Rowkey的范围单点进行扫描,然后统计的方式,换成了由所有Region 所在RegionServer同时计算的过程。

2.使用了在RegionServer内部执行使用了 InternalScanner。这是距离实际存储最近的Scanner接口,存取更加快捷。

相关 [hbase 统计 rowcount] 推荐:

HBase统计表行数(RowCount)的四种方法_Abysscarry的博客-CSDN博客

- -
对于其他数据存储系统来说,统计表的行数是再基本不过的操作了,一般实现都非常简单;但对于HBase这种key-value存储结构的列式数据库,统计. RowCount的方法却有好几种不同的花样,并且. 测试集群:HBase1.2.0 - CDH5.13.0 四台服务器. 注:以下4种方法效率依次提高.

hbase介绍

- AreYouOK? - 淘宝数据平台与产品部官方博客 tbdata.org
hbase是bigtable的开源山寨版本. 是建立的hdfs之上,提供高可靠性、高性能、列存储、可伸缩、实时读写的数据库系统. 它介于nosql和RDBMS之间,仅能通过主键(row key)和主键的range来检索数据,仅支持单行事务(可通过hive支持来实现多表join等复杂操作). 主要用来存储非结构化和半结构化的松散数据.

Riak对比HBase

- - NoSQLFan
文章来自 Riak官方wiki,是一篇Riak与HBase的对比文章. Riak官方的对比通常都做得很中肯,并不刻意偏向自家产品. 对比的Riak版本是1.1.x,HBase是0.94.x. Riak 与 HBase 都是基于 Apache 2.0 licensed 发布. Riak 的实现是基于 Amazon 的 Dynamo 论文,HBase 是基于 Google 的 BigTable.

[转]HBase简介

- - 小鸥的博客
   Hbase是一个分布式开源数据库,基于Hadoop分布式文件系统,模仿并提供了基于Google文件系统的Bigtable数据库的所有功能. 其目标是处理非常庞大的表,可以用普通的计算机处理超过10亿行数据,并且有数百万列元素组成的数据表. Hbase可以直接使用本地文件系统或者Hadoop作为数据存储方式,不过为了提高数据可靠性和系统的健壮性,发挥Hbase处理大数据量等功能,需要使用Hadoop作为文件系统.

HBase表设计

- - 互联网 - ITeye博客
默认情况下,在创建HBase表的时候会自动创建一个region分区,当导入数据的时候,所有的HBase客户端都向这一个region写数据, 直到这 个region足够大了才进行切分. 一种可以加快批量写入速度的方法是通过预先创建一些空的regions,这样当数据写入HBase时,会按 照 region分区情况,在集群内做数据的负载均衡.

HBase Memstore配置

- - 行业应用 - ITeye博客
HBase Memstore配置. 本文为翻译,原英文地址:http://blog.sematext.com/2012/07/16/hbase-memstore-what-you-should-know/.     当regionserver(以下简称RS)收到一个写请求,会将这个请求定位到某个特定的region.

hbase原理

- - CSDN博客云计算推荐文章
1.hbase利用hdfs作为其文件存储系统,利用mapreduce来处理数据,利用zookeeper作为协调工具. 2.行键(row key),类似于主键,但row key是表自带的. 3.列族(column family) ,列(也称作标签/修饰符)的集合,定义表的时候指定的,列是在插入记录的时候动态增加的.

hbase锁机制

- - 数据库 - ITeye博客
博文说明:1、研究版本hbase0.94.12;2、贴出的源代码可能会有删减,只保留关键的代码.   hbase的锁是采用jdk的ReentrantReadWriteLock类实现.   一、HRegion有两种锁:lock、updatesLock,这两种锁均是ReentrantReadWriteLock类的实例,基本上所有的region操作均需要获取lock的read共享锁,在获取了lock的read锁后,如果是增加或者删除等影响数据内容的操作则还需要获取updatesLock的read锁.

Hbase入门

- - CSDN博客云计算推荐文章
Hbase 全称是Hadoop DataBase ,是一种开源的,可伸缩的,高可靠,高性能,面向列的分布式存储系统. 类似于Google的BigTable,其分布式计算采用MapReduce,通过MapReduce完成大块数据加载和全表扫描操作. 文件存储系统是HDFS,通过Zookeeper来完成状态管理协同服务.

[原]HBase StoreFile Compaction

- - 芒果先生Mango的专栏
Store File的合并策略比较复杂,涉及多个参数,合并策略的好坏,直接影响HBase的读写性能. 发现这篇博文:http://blog.csdn.net/azhao_dn/article/details/8867036 对Compaction描述的言简意赅:. hbase为了防止小文件(被刷到磁盘的menstore)过多,以保证保证查询效率,hbase需要在必要的时候将这些小的store file合并成相对较大的store file,这个过程就称之为compaction.