无需手动输入命令,简单3步即可在K8S集群中启用GPU

标签: 命令 k8s 集群 | 发表时间:2021-01-07 07:00 | 作者:RancherLabs
出处:https://www.infoq.cn

随着全球各大企业开始广泛采用Kubernetes,我们看到Kubernetes正在向新的阶段发展。一方面,Kubernetes被边缘的工作负载所采用并提供超越数据中心的价值。另一方面,Kubernetes正在驱动机器学习(ML)和高质量、高速的数据分析性能的发展。

我们现在所了解到的将Kubernetes应用于机器学习的案例主要源于Kubernetes 1.10中一个的功能,当时图形处理单元(GPUs)成为一个可调度的资源——现在这一功能处于beta版本。单独来看,这两个都是Kubernetes中令人兴奋的发展。更令人兴奋的是,可以使用Kubernetes在数据中心和边缘采用GPU。在数据中心,GPU是一种构建ML库的方式。那些训练过的库将被迁移到边缘Kubernetes集群作为机器学习的推理工具,在尽可能靠近数据收集的地方提供数据分析。

在早些时候,Kubernetes还是为分布式应用程序提供一个CPU和RAM资源的池。如果我们有CPU和RAM池,为什么不能有一个GPU池呢?这当然毫无问题,但不是所有的server都有GPU。所以,如何让我们的server在Kubernetes中可以装配GPU呢?

在本文中,我将阐述在Kubernetes集群中使用GPU的简单方法。在未来的文章中,我们还将GPU推向至边缘并向你展示如何完成这一步骤。为了真正地简化步骤,我将用Rancher UI来操作启用GPU的过程。Rancher UI只是Rancher RESTful APIs的一个客户端。你可以在GitOps、DevOps和其他自动化解决方案中使用其他API的客户端,比如Golang、Python和Terraform。不过,我们不会在此文中深入探讨这些。

本质上看,步骤十分简单:

为Kubernetes集群构建基础架构安装Kubernetes从Helm中安装gpu-operator

使用Rancher和可用的GPU资源启动和运行

Rancher是一个多集群管理解决方案并且是上述步骤的粘合剂。你可以在NVIDIA的博客中找到一个简化GPU管理的纯NVIDIA解决方案,以及一些关于gpu-operator与构建没有operator的GPU驱动堆栈有何区别的重要信息。

(https://developer.nvidia.com/blog/nvidia-gpu-operator-simplifying-gpu-management-in-kubernetes/)

前期准备

以下是在Rancher中启动和运行GPU所需的材料清单(BOM):

RancherGPU Operator(https://nvidia.github.io/gpu-operator/)基础架构——我们将在AWS上使用GPU节点

在官方文档中,我们有专门的章节阐述如何高可用安装Rancher,所以我们假设你已经将Rancher安装完毕:

https://docs.rancher.cn/docs/rancher2/installation/k8s-install/_index/

流程步骤

使用GPUs安装Kubernetes集群

Rancher安装之后,我们首先将构建和配置一个Kubernetes集群(你可以使用任何带有NVIDIA GPU的集群)。

使用Global上下文,我们选择Add Cluster

并在“来自云服务商提供的主机”部分,选择Amazon EC2。

我们是通过节点驱动来实现的—— 一组预配置的基础设施模板,其中一些模板有GPU资源。

注意到这里有3个节点池:一个是为master准备的,一个是为标准的worker节点准备的,另一个是为带GPU的worker准备的。GPU的模板基于p3.2xlarge机器类型,使用Ubuntu 18.04亚马逊机器镜像或AMI(ami-0ac80df6eff0e70b5)。当然,这些选择是根据每个基础设施提供商和企业需求而变化的。另外,我们将 “Add Cluster”表单中的Kubernetes选项设置为默认值。

设置GPU Operator

现在,我们将使用GPU Operator库(https://nvidia.github.io/gpu-operator)在Rancher中设置一个catalog。(也有其他的解决方案可以暴露GPU,包括使用Linux for Tegra [L4T] Linux发行版或设备插件)在撰写本文时,GPU Operator已经通过NVIDIA Tesla Driver 440进行了测试和验证。

使用Rancher Global上下文菜单,我们选择要安装到的集群:

然后使用Tools菜单来查看catalog列表。

点击Add Catalog按钮并且给其命名,然后添加url:https://nvidia.github.io/gpu-operator

我们选择了Helm v3和集群范围。我们点击Create以添加Catalog到Rancher。当使用自动化时,我们可以将这一步作为集群构建的一部分。根据企业策略,我们可以添加这个Catalog到每个集群中,即使它还没有GPU节点或节点池。这一步为我们提供了访问GPU Operator chart的机会,我们接下来将安装它。

现在我们想要使用左上角的Rancher上下文菜单以进入集群的“System”项目,我们在这里添加了GPU Operator功能。

在System项目中,选择Apps:

然后点击右上方的Launch按钮。

我们可以搜索“nvidia”或者向下滚动到我们刚刚创建的catalog。

点击gpu-operator app,然后在页面底部点击Launch。

在这种情况下,所有的默认值都应该没问题。同样,我们可以通过Rancher APIs将这一步骤添加到自动化中。

利用GPU

既然GPU已经可以访问,我们现在可以部署一个GPU-capable 工作负载。同时,我们可以通过在Rancher中查看Cluster -> Nodes的页面验证安装是否成功。我们看到GPU Operator已经安装了Node Feature Discovery (NFD)并且给我们的节点贴上了GPU使用的标签。

总结

之所以能够采用如此简单的方法就能够让Kubernetes与GPU一起运行,离不开这3个重要部分:

NVIDIA的GPU Operator来自Kubernetes同名SIG的Node Feature Discovery(NFD)。Rancher的集群部署和catalog app集成

文章转载自: RancherLabs(ID:RancherLabs)

原文链接: 无需手动输入命令,简单3步即可在K8S集群中启用GPU"

相关 [命令 k8s 集群] 推荐:

无需手动输入命令,简单3步即可在K8S集群中启用GPU

- - InfoQ推荐
随着全球各大企业开始广泛采用Kubernetes,我们看到Kubernetes正在向新的阶段发展. 一方面,Kubernetes被边缘的工作负载所采用并提供超越数据中心的价值. 另一方面,Kubernetes正在驱动机器学习(ML)和高质量、高速的数据分析性能的发展. 我们现在所了解到的将Kubernetes应用于机器学习的案例主要源于Kubernetes 1.10中一个的功能,当时图形处理单元(GPUs)成为一个可调度的资源——现在这一功能处于beta版本.

k8s docker集群搭建 - CSDN博客

- -
一、Kubernetes系列之介绍篇.     - 一次构建,到处运行. 2.什么是kubernetes.   首先,他是一个全新的基于容器技术的分布式架构领先方案. Kubernetes(k8s)是Google开源的容器集群管理系统(谷歌内部:Borg). 在Docker技术的基础上,为容器化的应用提供部署运行、资源调度、服务发现和动态伸缩等一系列完整功能,提高了大规模容器集群管理的便捷性.

构建生产就绪的K8S集群的16点清单

- - SegmentFault 最新的文章
Kubernetes是用于构建高度可扩展系统的强大工具. 结果,许多公司已经开始或正在计划使用它来协调生产服务. 不幸的是,像大多数强大的技术一样,Kubernetes也很复杂. 我们整理了以下清单,以帮助你生产环境最佳实践Kubernetes. Kubernetes提供了一种编排容器化服务的方法,因此,如果您没有按顺序实践你的容器,那么集群一开始就不会处于良好状态.

从零开始在ubuntu上安装和使用k8s集群及报错解决

- - 行业应用 - ITeye博客
这几天在学习K8S的安装和使用,在此记录一下. 两小时Kubernetes(K8S)从懵圈到熟练——大型分布式集群环境捷径部署搭建_哔哩哔哩 (゜-゜)つロ 干杯~-bilibili. 镜像+讲义+安装包,链接:https://pan.baidu.com/s/1qO697oBuR7TwQ2J8boI3EA 提取码:4mvs.

kafka集群操作命令

- - 开源软件 - ITeye博客
默认Kafka会使用ZooKeeper默认的/路径,这样有关Kafka的ZooKeeper配置就会散落在根路径下面,如果 你有其他的应用也在使用ZooKeeper集群,查看ZooKeeper中数据可能会不直观,所以强烈建议指定一个chroot路径,直接在 zookeeper.connect配置项中指定.

CentOS7 安装 K8S

- - 企业架构 - ITeye博客
前提:VirtualBox CentOS7. 物理机IP   192.168.18.8. 虚拟机1IP:192.168.18.100(VMaster master). 虚拟机2IP:192.168.18.101(VServer1 node1). 虚拟机3IP:192.168.18.102(VServer2 node2).

深入掌握K8S Pod - Yabea - 博客园

- -
K8S configmap介绍. Pod是k8s中最小的调度单元,包含了一个“根容器”和其它用户业务容器. 如果你使用过k8s的话,当然会了解pod的基本使用,但是为了更好的应用,你需要深入了解pod的配置、调度、升级和扩缩容等. pod包含一个或多个相对紧密耦合的容器,处于同一个pod中的容器共享同样的存储空间、IP地址和Port端口.

浅谈 k8s ingress controller 选型 - 知乎

- -
大家好,先简单自我介绍下,我叫厉辉,来自腾讯云. 业余时间比较喜欢开源,现在是Apache APISIX PPMC. 今天我来简单给大家介绍下 K8S Ingress 控制器的选型经验,今天我讲的这些内容需要大家对 K8S 有一定的了解,下面是我的分享. 阅读本文需要熟悉以下基本概念:. 集群:是指容器运行所需云资源的集合,包含了若干台云服务器、负载均衡器等云资源.

使用kube-proxy让外部网络访问K8S service的ClusterIP

- - zzm
kubernetes版本大于或者等于1.2时,外部网络(即非K8S集群内的网络)访问cluster IP的办法是:. 修改master的/etc/kubernetes/proxy,把KUBE_PROXY_ARGS=”“改为KUBE_PROXY_ARGS=”–proxy-mode=userspace”.

k8s外网如何访问业务应用之Service 池化pod

- - IT瘾-geek
一、废话:先讲述一个k8s重要概念,我觉得这个概念是整个k8s集群实现微服务的最核心的概念. Service定义了Pod的逻辑集合和访问该集合的策略,是真实服务的抽象. Service提供了一个统一的服务访问入口以及服务代理和发现机制,用户不需要了解后台Pod是如何运行. 只需要将一组跑同一服务的pod池化成一个service,k8s集群会自动给这个service分配整个集群唯一ip和端口号(这个端口号自己在yaml文件中定义),一个service定义了访问pod的方式,就像单个固定的IP地址和与其相对应的DNS名之间的关系.