数据结构之红黑树

标签: 数据结构与算法 数据结构,红黑树,自平衡二叉树 | 发表时间:2011-08-20 16:44 | 作者:Dong Shengbin
出处:http://dongxicheng.org

1. 简介

红黑树是一种自平衡二叉查找树。它的统计性能要好于平衡二叉树(AVL树),因此,红黑树在很多地方都有应用。在C++ STL中,很多部分(目前包括set, multiset, map, multimap)应用了红黑树的变体(SGI STL中的红黑树有一些变化,这些修改提供了更好的性能,以及对set操作的支持)。它是复杂的,但它的操作有着良好的最坏情况运行时间,并且在实践中是高效的: 它可以在O(log n)时间内做查找,插入和删除等操作。

本文介绍了红黑树的基本性质和基本操作。

2. 红黑树的性质

红黑树,顾名思义,通过红黑两种颜色域保证树的高度近似平衡。它的每个节点是一个五元组:color(颜色),key(数据),left(左孩子),right(右孩子)和p(父节点)。

红黑树的定义也是它的性质,有以下五条:

性质1. 节点是红色或黑色

性质2. 根是黑色

性质3. 所有叶子都是黑色(叶子是NIL节点)

性质4. 如果一个节点是红的,则它的两个儿子都是黑的

性质5. 从任一节点到其叶子的所有简单路径都包含相同数目的黑色节点。

这五个性质强制了红黑树的关键性质: 从根到叶子的最长的可能路径不多于最短的可能路径的两倍长。为什么呢?性质4暗示着任何一个简单路径上不能有两个毗连的红色节点,这样,最短的可能路径全是黑色节点,最长的可能路径有交替的红色和黑色节点。同时根据性质5知道:所有最长的路径都有相同数目的黑色节点,这就表明了没有路径能多于任何其他路径的两倍长。

3. 红黑树的基本操作

因为红黑树也是二叉查找树,因此红黑树上的查找操作与普通二叉查找树上的查找操作相同。然而,红黑树上的插入操作和删除操作会导致不再符合红黑树的性质。恢复红黑树的性质需要少量(O(log n))的颜色变更(实际是非常快速的)和不超过三次树旋转(对于插入操作是两次)。虽然插入和删除很复杂,但操作时间仍可以保持为 O(log n) 次。

3.1 插入操作

插入操作可以概括为以下几个步骤:

(1) 查找要插入的位置,时间复杂度为:O(N)

(2) 将新节点的color赋为红色

(3) 自下而上重新调整该树为红黑树

其中,第(1)步的查找方法跟普通二叉查找树一样,第(2)步之所以将新插入的节点的颜色赋为红色,是因为:如果设为黑色,就会导致根到叶子的路径上有一条路上,多一个额外的黑节点,这个是很难调整的。但是设为红色节点后,可能会导致出现两个连续红色节点的冲突,那么可以通过颜色调换(color flips)和树旋转来调整,这样简单多了。下面讨论步骤(3)的一些细节:

设要插入的节点为N,其父节点为P,其父亲G的兄弟节点为U(即P和U是同一个节点的两个子节点)。

[1] 如果P是黑色的,则整棵树不必调整便是红黑树。

[2] 如果P是红色的(可知,其父节点G一定是黑色的),则插入z后,违背了性质4,需要进行调整。调整时分以下3种情况:

(a)N的叔叔U是红色的

如上图所示,我们将P和U重绘为黑色并重绘节点G为红色(用来保持性质5)。现在新节点N有了一个黑色的父节点P,因为通过父节点P或叔父节点U的任何路径都必定通过祖父节点G,在这些路径上的黑节点数目没有改变。但是,红色的祖父节点G的父节点也有可能是红色的,这就违反了性质4。为了解决这个问题,我们在祖父节点G上递归调整颜色。

(b)N的叔叔U是黑色的,且N是右孩子

如上图所示,我们对P进行一次左旋转调换新节点和其父节点的角色; 接着,按情形(c)处理以前的父节点P以解决仍然失效的性质4。

(c)N的叔叔U是黑色的,且N是左孩子

如上图所示,对祖父节点G 的一次右旋转; 在旋转产生的树中,以前的父节点P现在是新节点N和以前的祖父节点G 的父节点, 然后交换以前的父节点P和祖父节点G的颜色,结果的树满足性质4,同时性质5[4]也仍然保持满足。

3.2 删除操作

删除操作可以概括为以下几个步骤:

(1) 查找要删除位置,时间复杂度为:O(N)

(2) 用删除节点后继或者节点替换该节点(只进行数据替换即可,不必调整指针,后继节点是中序遍历中紧挨着该节点的节点,即:右孩子的最左孩子节点)

(3) 如果删除节点的替换节点为黑色,则需重新调整该树为红黑树

其中,第(1)步的查找方法跟普通二叉查找树一样,第(2)步之所以用后继节点替换删除节点,是因为这样可以保证该后继节点之上仍是一个红黑树,而后继节点可能是一个叶节点或者只有右子树的节点,这样只需用有节点替换后继节点即可达到删除的目的。如果需要删除的节点有两个儿子,那么问题可以被转化成删除另一个只有一个儿子的节点的问题。(没看懂???可参考:http://zh.wikipedia.org/wiki/%E7%BA%A2%E9%BB%91%E6%A0%91 )在第(3)步中,如果,如果删除节点为红色节点,则他的父亲和孩子全为黑节点,这样直接删除该节点即可,不必进行任何调整。如果删除节点是黑节点,分四种情况:

设要删除的节点为N,其父节点为P,其兄弟节点为S。

由于N是黑色的,则P可能是黑色的,也可能是红色的,S也可能是黑色的或者红色的

(1)S是红色的

此时P肯定是红色的。我们对N的父节点进行左旋转,然后把红色兄弟转换成N的祖父。我们接着对调 N 的父亲和祖父的颜色。尽管所有的路径仍然有相同数目的黑色节点,现在 N 有了一个黑色的兄弟和一个红色的父亲,所以我们可以接下去按 (2)、(3)或(4)情况来处理。

(2)S和S的孩子全是黑色的

在这种情况下,P可能是黑色的或者红色的,我们简单的重绘S 为红色。结果是通过S的所有路径,它们就是以前不通过 N 的那些路径,都少了一个黑色节点。因为删除 N 的初始的父亲使通过 N 的所有路径少了一个黑色节点,这使事情都平衡了起来。但是,通过 P 的所有路径现在比不通过 P 的路径少了一个黑色节点。接下来,要调整以P作为N递归调整树。

(3)S是黑色的,S的左孩子是红色,右孩子是黑色

这种情况下我们在 S 上做右旋转,这样 S 的左儿子成为 S 的父亲和 N 的新兄弟。我们接着交换 S 和它的新父亲的颜色。所有路径仍有同样数目的黑色节点,但是现在 N 有了一个右儿子是红色的黑色兄弟,所以我们进入了情况(4)。N 和它的父亲都不受这个变换的影响。

(4)S是黑色的,S的右孩子是红色

在这种情况下我们在 N 的父亲上做左旋转,这样 S 成为 N 的父亲和 S 的右儿子的父亲。我们接着交换 N 的父亲和 S 的颜色,并使 S 的右儿子为黑色。子树在它的根上的仍是同样的颜色,所以属性 3 没有被违反。但是,N 现在增加了一个黑色祖先: 要么 N 的父亲变成黑色,要么它是黑色而 S 被增加为一个黑色祖父。所以,通过 N 的路径都增加了一个黑色节点。

4. 参考资料

(1) 《算法导论》,第二版

(2) http://zh.wikipedia.org/wiki/%E7%BA%A2%E9%BB%91%E6%A0%91

———————————————————————————————-

更多关于数据结构和算法的介绍,请查看:数据结构与算法汇总

———————————————————————————————-

原创文章,转载请注明: 转载自董的博客

本文链接地址: http://dongxicheng.org/structure/red-black-tree/

相关 [数据结构 红黑树] 推荐:

数据结构之红黑树

- Shengbin - 董的博客
红黑树是一种自平衡二叉查找树. 它的统计性能要好于平衡二叉树(AVL树),因此,红黑树在很多地方都有应用. 在C++ STL中,很多部分(目前包括set, multiset, map, multimap)应用了红黑树的变体(SGI STL中的红黑树有一些变化,这些修改提供了更好的性能,以及对set操作的支持).

数据结构之BloomFilter

- - 编程语言 - ITeye博客
BloomFilter是什么.        BloomFilter主要提供两种操作: add()和contains(),作用分别是将元素加入其中以及判断一个元素是否在其中,类似于Java中的Set接口,它内部采用的byte数组来节 省空间. 其独特之处在于contains()方法,当我们需要查询某个元素是否包含在BloomFilter中时,如果返回true,结果可能是不正确 的,也就是元素也有可能不在其中;但是如果返回的是false,那么元素一定不在其中.

使用graphviz画数据结构

- 王者自由 - Emacs中文网
今天下午用了些时间写了个小的函数,该函数配合 autoinsert + graphviz-dot-mode ,可以很方便的将 C 语言中指定的 struct 结构画出来. 这样,画了多个数据结构之后,再手动添加几条线, 数据结构之间的关系就一目了然了. 1.2 Graphviz 的安装. 1.3 Graphviz 的使用.

数据结构-二分法查找

- - 操作系统 - ITeye博客
1、二分查找(Binary Search).      二分查找又称折半查找,它是一种效率较高的查找方法.      二分查找要求:线性表是有序表,即表中结点按关键字有序,并且要用向量作为表的存储结构. 2、二分查找的基本思想.      二分查找的基本思想是:(设R[low..high]是当前的查找区间).

redis数据结构缓存运用

- - 企业架构 - ITeye博客
之前redis已经描述了redis 的基本作用与用处, 这一篇主要讲述redis运用场景以及分片,和spring整合. redis 存储数据结构大致5种,String 普通键值对,用的比较多. HASH针对 key 唯一标识 hashmap 键值对运用也比较多 list set 当然是集合运用 sortedSet 排序集合使用.

查找(一)史上最简单清晰的红黑树讲解

- - CSDN博客推荐文章
我们使用 符号表这个词来描述一张抽象的表格,我们会将信息( 值)存储在其中,然后按照指定的 键来搜索并获取这些信息. 键和值的具体意义取决于不同的应用. 符号表中可能会保存很多键和很多信息,因此实现一张高效的符号表也是一项很有挑战性的任务. 我们会用三种经典的数据类型来实现高效的符号表: 二叉查找数、 红黑树、 散列表.

可视化的数据结构和算法

- greenar - 酷壳 - CoolShell.cn
还记得之前发布过的那个关于可视化排序的文章吗. 在网上又看到了一个旧金山大学David Galles做的各种可视化的数据结构和基本算法的主页,网址在这里,大家可以看看. 我把这个页面的目录列在下面并翻译了一下,大家可以直接点击了. 不知道国内的教育有没有相关的教学课件,至少在我大学的时候是没有的. Queues队列: 数组实现.

为什么要学习算法和数据结构

- snowflip - TopLanguage Google Group

MySQL索引背后的数据结构及算法原理

- Mike - 博客园-EricZhang's Technology Blog
在编程领域有一句人尽皆知的法则“程序 = 数据结构 + 算法”,我个人是不太赞同这句话(因为我觉得程序不仅仅是数据结构加算法),但是在日常的学习和工作中我确认深深感受到数据结构和算法的重要性,很多东西,如果你愿意稍稍往深处挖一点,那么扑面而来的一定是各种数据结构和算法知识. 例如几乎每个程序员都要打交道的数据库,如果仅仅是用来存个数据、建建表、建建索引、做做增删改查,那么也许觉得数据结构和这东西没什么关系.