SQL调优:Clustering Factor影响数据删除速度一例

标签: Blog oracle SQL调优 索引 clustering_factor | 发表时间:2011-05-26 20:12 | 作者:admin Maclean
出处:http://www.oracledatabase12g.com

事情是这样的,客户有一套核心的10g业务数据库,需要针对个别大表删除2年前的归档数据,这些表都是普通的堆表(heap table),没有使用分区或其他技术。因为考虑到不能影响在线业务,所以不能使用insert append/rename的方式来加速删除,只能老老实实地在匿名PL/SQL块里通过rowid批量删除数据,虽然慢一些但还是能接受的,具体的PL/SQL块如下:

DECLARE
   CURSOR table_name_cur IS SELECT /*+ FULL(a) */ a.rowid from table_name a  where time_column<required_date
   table_name_rec table_name_cur%ROWTYPE;
   row_number number;
BEGIN
   row_number :=0;
   OPEN table_name_cur;
   LOOP
      FETCH table_name_cur INTO table_name_rec;
      IF table_name_cur%NOTFOUND
      THEN
      commit;
         EXIT;
      END IF;
      delete from table_name WHERE rowid = table_name_rec.rowid;
      row_number := row_number + 1;
           if (mod (row_number,1000) =0) then
           insert into delete_rows values (row_number);
           commit;
           end if;
   END LOOP;
  insert into delete_rows values (row_number);
   commit;
   CLOSE table_name_cur;
END;
/

可以看到以上使用一个游标FULL SCAN目标数据表取出所需删除行的rowid,之后在循环中不断fetch出rowid并实际删除数据。

问题出在一张不是非常大的LG表上(不超过10GB),删除这张LG表消耗的时间超过10个小时,而其他更大的表删除也仅用2-3个小时。

针对这一反常现象,客户对删除操作做了10046 level8的跟踪,因为整个删除过程比较长,所以仅 trace了一小段时间,因为这个trace并不完整所以没有办法使用tkprof工具分析该trace。没办法,就分析裸trace信息吧。

从trace内容来看,该时段内主要的等待是db file sequence read(简称DFSR)即数据文件单块读事件,一开始以为是表上有链式行/迁移行造成了大量的DFSR,但客户日常有对该表执行chained rows analyze,没有发现该表上有明显的chained/migrated rows问题。

具体观察该DFSR事件的p1/p2 obj#参数发现这些数据文件单块读主要是针对该LG表的2个索引的,而且最为奇怪的是其中一个索引单块读的频率远多于另外一个索引,比例大约为60:1。这2个索引的差异表现,让我意识到得问题的所在,查看dba_indexes索引视图发现最近一次分析是在4/18日,而2个索引统计信息间最大的差异不在于索引大小,而在于clustering_factor也就是我们说的聚集因子, LG表上大约有6000万条数据,索引A的clustering_factor为170万,而索引B的clustering_factor达到了3400万,即2个索引的聚集因子差20倍,显然这时因为索引A上column更为有序(可能是sequence)而索引B上的字段较为随机造成了这种反差。

因为一开始使用FULL SCAN目标数据表来获取所需的ROWID,所以在实际删除前相关数据行所在的表数据块已经被FULL SCAN读取到buffer cache中了,FULL SCAN使用scattered read多块读,在这里不是主要的性能瓶颈。最主要的问题在于,假设一个table data block中有20行数据,对于clustering_factor较低的索引A而言可能这20行数据都映射到索引的一个leaf block中,而对于clustering_factor很高的索引B而言可能这20行数据需要映射到20个leaf block中,那么如果我们要删除这个数据块中的20行数据,就需要访问索引A上的1个leaf块和索引B上的20个leaf块,因为这些都是历史归档数据,所以日常已经没有业务访问这些old leaf block了,所以这部分的叶子块几乎不会在buffer cache中,服务进程需要把它们”一一”(这里真的是一一,一次读一块)从disk上读取到缓存中;最糟糕的还不止于此,因为实例的buffer cache有限,索引B上的leaf block在读入后可能很快被踢出buffer cache,而因为table与索引B间数据的无序性,这些leaf block可能需要在后续的删除中再次访问,这将对索引B的物理读取代价大大放大了。这种代价反映在Oracle wait interface上就是用户频繁地看到针对某个索引的”db file sequential read”等待事件。

我们通过还原现场,来深入了解一下clustering factor对于删除的影响:

首先要构建一张有一列极端有序,而一列极端无序的数据表

SQL> select * from v$version;

BANNER
----------------------------------------------------------------
Oracle Database 10g Enterprise Edition Release 10.2.0.4.0 - 64bi
PL/SQL Release 10.2.0.4.0 - Production
CORE    10.2.0.4.0      Production
TNS for Linux: Version 10.2.0.4.0 - Production
NLSRTL Version 10.2.0.4.0 - Production

SQL> create table sample nologging tablespace users as select rownum t1  from dual  connect by level<=900000; 

Table created. 

SQL> alter table sample add t2 number;
Table altered.

SQL> update sample set t2=dbms_random.value(1,999999999999999);
900000 rows updated.

SQL> commit;
Commit complete.

SQL> create index ind_t1 on sample(t1) nologging;
Index created.

SQL> create index ind_t2 on sample(t2) nologging;
Index created.

SQL> exec dbms_stats.gather_table_stats('MACLEAN','SAMPLE',cascade=>TRUE);
PL/SQL procedure successfully completed.

SQL> select blocks,NUM_ROWS from dba_tables where table_name='SAMPLE';

    BLOCKS   NUM_ROWS
---------- ----------
     13213     900000

SQL> select CLUSTERING_FACTOR,LEAF_BLOCKS,DISTINCT_KEYS,index_name from dba_indexes where table_name='SAMPLE';

CLUSTERING_FACTOR LEAF_BLOCKS DISTINCT_KEYS INDEX_NAME
----------------- ----------- ------------- ------------------------------
           899782        4148        896896 IND_T2
            14975        2004        900000 IND_T1

/* 以上构建了一张90万行的数据表,共13213个block
    T1列通过序列产生,较为有序
    T2列通过随机数产生,无序
    ind_t1索引构建在t1列上,clustering_factor较低14975,接近表上数据块的总数
    ind_t2索引构建在t2列上,clustering_factor为899782,接近表上数据行的总数
*/  

SQL> alter session set events '10046 trace name context forever,level 8';
Session altered.

SQL> set timing on;

DECLARE
   CURSOR table_name_cur IS SELECT /*+ FULL(a) */ a.rowid from sample a  where t1<=900000;
   table_name_rec table_name_cur%ROWTYPE;
   row_number number;
BEGIN
   row_number :=0;
   OPEN table_name_cur;
   LOOP
      FETCH table_name_cur INTO table_name_rec;
      IF table_name_cur%NOTFOUND
      THEN
      commit;
         EXIT;
      END IF;
      delete from sample WHERE rowid = table_name_rec.rowid;
      row_number := row_number + 1;
           if (mod (row_number,1000) =0) then
           insert into delete_rows values (row_number);
           commit;
           end if;
   END LOOP;
  insert into delete_rows values (row_number);
   commit;
   CLOSE table_name_cur;
END;
/

Elapsed: 00:03:28.52 

观察其trace文件,可以发现在多次EXEC/FETCH后就会紧跟一个db file sequential read等待事件 

众所周知db file sequential read等待事件在如v$session/V$session/v$active_session_history
等动态性能视图中的p1代表file号,p2为block号,p3为读取block总数,一般为1
而在10046 trace中可以直接看到file#,block#,blocks和obj#,为了分辨单块读的对象,可以直接从obj#了解

SQL> select object_id,object_name,object_type from dba_objects where object_name in ('SAMPLE','IND_T1','IND_T2');

 OBJECT_ID OBJECT_NAME          OBJECT_TYPE
---------- -------------------- -------------------
   1307548 IND_T1               INDEX
   1307549 IND_T2               INDEX
   1307547 SAMPLE               TABLE

WAIT #3: nam='db file sequential read' ela= 283 file#=6 block#=3311 blocks=1 obj#=1307549 tim=1275797217728516
EXEC #3:c=999,e=349,p=1,cr=2,cu=8,mis=0,r=1,dep=1,og=1,tim=1275797217728552
FETCH #2:c=0,e=5,p=0,cr=1,cu=0,mis=0,r=1,dep=1,og=1,tim=1275797217728578
EXEC #3:c=0,e=49,p=0,cr=1,cu=8,mis=0,r=1,dep=1,og=1,tim=1275797217728641
FETCH #2:c=0,e=4,p=0,cr=1,cu=0,mis=0,r=1,dep=1,og=1,tim=1275797217728663
EXEC #3:c=0,e=36,p=0,cr=1,cu=8,mis=0,r=1,dep=1,og=1,tim=1275797217728712
FETCH #2:c=0,e=3,p=0,cr=1,cu=0,mis=0,r=1,dep=1,og=1,tim=1275797217728732
WAIT #3: nam='db file sequential read' ela= 205 file#=6 block#=3956 blocks=1 obj#=1307549 tim=1275797217728979
EXEC #3:c=0,e=265,p=1,cr=1,cu=8,mis=0,r=1,dep=1,og=1,tim=1275797217729010
FETCH #2:c=0,e=5,p=0,cr=1,cu=0,mis=0,r=1,dep=1,og=1,tim=1275797217729036

[oracle@rh2 udump]$ cat g10r2_ora_5190.trc|grep "db file sequential read"|wc -l
72395

[oracle@rh2 udump]$ cat g10r2_ora_5190.trc|grep "db file sequential read"|grep 1307549|wc -l
67721

[oracle@rh2 udump]$ cat g10r2_ora_5190.trc|grep "db file sequential read"|grep 1307548|wc -l
3878

/* 以上object_id 1307549对应为较高clustering_factor的索引IND_T2,
    该索引发生了绝大多数db file sequential read等待
    而object_id 1307548对应为较低clustering_factor的索引IND_T1,
    该索引发生了较少量的db file sequential read等待
*/

SQL> select sql_id,executions,disk_reads,user_io_wait_time/1000000,elapsed_time/1000000
  2  from v$sql
  3  where sql_text='DELETE FROM SAMPLE WHERE ROWID = :B1 ';

SQL_ID        EXECUTIONS DISK_READS USER_IO_WAIT_TIME/1000000 ELAPSED_TIME/1000000
------------- ---------- ---------- ------------------------- --------------------
31m4m2drt2t5m     900000      74936                 67.862581           147.743482

[oracle@rh2 udump]$ tkprof g10r2_ora_5190.trc 5190.tkf sys=no

DELETE FROM SAMPLE
WHERE
 ROWID = :B1

call     count       cpu    elapsed       disk      query    current        rows
------- ------  -------- ---------- ---------- ---------- ----------  ----------
Parse        1      0.00       0.00          0          0          0           0
Execute 900000     78.67     147.73      74936     916440    6401613      900000
Fetch        0      0.00       0.00          0          0          0           0
------- ------  -------- ---------- ---------- ---------- ----------  ----------
total   900001     78.67     147.73      74936     916440    6401613      900000

Misses in library cache during parse: 1
Misses in library cache during execute: 1
Optimizer mode: ALL_ROWS
Parsing user id: 64     (recursive depth: 1)

Elapsed times include waiting on following events:
  Event waited on                             Times   Max. Wait  Total Waited
  ----------------------------------------   Waited  ----------  ------------
  SQL*Net message to client                       1        0.00          0.00
  SQL*Net message from client                     1       21.99         21.99
  db file sequential read                     72362        0.05         67.60
  db file scattered read                        543        0.00          0.25
  log file switch completion                     29        0.97          5.81
  free buffer waits                             268        0.01          2.83
  latch: cache buffers lru chain                  3        0.00          0.00
  latch: object queue header operation            5        0.00          0.00
  log file switch (checkpoint incomplete)        22        0.97          8.46
  latch: In memory undo latch                     2        0.00          0.00
  latch: cache buffers chains                     1        0.00          0.00

可能是受限于固化的思维,在我的潜意识中总是觉得clustering_factor聚集因子只会影响select查询语句,而忽略了其对update/delete操作的影响;事实是clustering_factor(注意它只是一个统计信息指标,而非参数)反映了数据在表中的随机分布程度,当表上的数据分布无序时表和索引间的交叉访问将显得很糟糕,这种交叉访问并不局限于查询语句(一个典型可能是INDEX RANGE SCAN-TABLE ACCESS BY INDEX ROWID),也可能发生在DML操作所隐含的维护索引操作中。

显然除了通过以某些列的顺序整理表外没有太好的方法来降低clustering_factor,但实际上这样做是不可能的。首先定期有序化整理的成本过高了,其次如果表上有多个单列上的不同索引,如我们上述演示中的t1、t2列,如果以t2列的顺序整理表那么一个很可能的结果是t1列上的索引的clustering factor猛增,如:

SQL> create table ordered_sample nologging tablespace users as select * From sample order by t2;
Table created.

SQL> truncate table sample;
Table truncated.

SQL> insert /*+ append */ into sample select * from ordered_sample;
900000 rows created.

SQL> commit;
Commit complete.

SQL> exec dbms_stats.gather_table_stats('MACLEAN','SAMPLE',cascade=>TRUE);
PL/SQL procedure successfully completed.

SQL> select clustering_factor,index_name from dba_indexes where table_name='SAMPLE';

CLUSTERING_FACTOR INDEX_NAME
----------------- ------------------------------
           899782 IND_T1
             3983 IND_T2

/* 可以看到ind_t2所以的clustering_factor的确下降了,换得的是ind_t1对应的增长 */

针对由该clustering_factor引起的低效率批量delete/update操作,我们可以通过以下措施减少”db file sequential read”等待的出现:

  1. 通过keep cache保留池等技术将clustering_factor过高的索引缓存住,以避免频繁地单块物理读,从而提高性能
  2. 如果你正在执行一个大作业,那么可以暂时将clustering_factor过高的索引drop掉,在完成操作后再重建该索引,这样起到加速作业的目的

rebuild重建索引在以上案例的情景中获益并不大。

另外”db file sequential read”单块读等待是一种最为常见的物理IO等待事件,这里的sequential指的是将数据块读入到相连的内存空间中(contiguous memory space),而不是指所读取的数据块是连续的。该wait event可能在以下情景中发生:

  1. 最为常见的是执行计划中包含了INDEX FULL SCAN/UNIQUE SCAN,此时出现”db file sequential read”等待是预料之中的,一般不需要我们去特别关注
  2. 当执行计划包含了INDEX RANGE SCAN-(“TABLE ACCESS BY INDEX ROWID”/”DELETE”/”UPDATE”),服务进程将按照”访问索引->找到rowid->访问rowid指定的表数据块并执行必要的操作”顺序访问index和table,每次物理读取都会进入”db file sequential read”等待,且每次读取的都是一个数据块;这种情况下clustering_factor将发挥其作用,需要我们特别去关注,本例中提及的解决方法对这种情景也有效
  3. Extent boundary,假设一个Extent区间中有33个数据块,而一次”db file scattered read”多块读所读取的块数为8,那么在读取这个区间时经过4次多块读取后,还剩下一个数据块,但是请记住多块读scattered read是不能跨越一个区间的(span an extent),此时就会单块读取并出现”db file scattered read”。这是一种正常现象,一般不需要额外关注
  4. 假设某个区间内有8个数据块,它们可以是块a,b,c,d,e,f,g,h,恰好当前系统中除了d块外的其他数据块都已经被缓存在buffer cache中了,而这时候恰好要访问这个区间中的数据,那么此时就会单块读取d这个数据块,并出现”db file sequential read”等待。注意这种情况不仅于表,也可能发生在索引上。这是一种正常现象,一般不需要额外关注
  5. chained/migrated rows即链式或迁移行,这里我们不介绍链式行的形成原因,chained/migrated rows会造成服务进程在fetch一行记录时需要额外地单块读取,从而出现”db file sequential read”。这种现象需要我们特别去关注,因为大量的链式/迁移行将导致如FULL SCAN等操作极度恶化(以往的经验是一张本来全表扫描只需要30分钟的表,在出现大量链式行后,全表扫描需要数个小时),同时也会对其他操作造成不那么明显的性能影响。可以通过监控v$sysstat视图中的”table fetch continued row”操作统计来了解系统中链式/迁移行访问的情况,还可以通过DBA_TBALES视图中的CHAIN_CNT来了解表上的链式/迁移行情况,当然这要求定期收集表上的统计信息;如果没有定期收集的习惯,那么可以配合@?/rdbms/admin/utlchain脚本和analyze table list chained rows 命令来获取必要的链式行信息
  6. 创建Index entry,显然当对表上执行INSERT操作插入数据时,虽然在执行计划中你看不到过多的细节,但实际上我们需要利用索引来快速验证表上的某些约束是否合理,还需要在索引的叶子块中插入相关的记录,此时也可能出现”db file sequential read”等待事件,当然这还和具体的插入的方式有关系。这是一种正常现象,一般不需要额外关注
  7. 针对表上的UPDATE/DELETE,不同于之前提到的”INDEX RANGE SCAN-UPDATE/DELETE”,如果我们使用rowid去更新或删除数据时,服务进程会先访问rowid指向的表块(注意是先访问table block)上的行数据,之后会根据该行上的具体数据去访问索引叶子块(注意Oracle并不知道这些leaf block在哪里,所以这里同样要如range-scan/unique-scan那样去访问index branch block),这些访问都将会是单块读取,并会出现’db file sequential read’,完成必要的读取后才会执行更新或删除的实际EXEC操作,如下例:
以下trace中,obj#=1307547为sample表,而obj#=1307549为sample表上的唯一一个索引 

PARSING IN CURSOR #10 len=58 dep=0 uid=64 oct=6 lid=64 tim=1275805024007795 hv=505118268 ad='d387e470'
update sample set t2=t2+1 where rowid='AAE/OzAAEAAANUEAAQ'
END OF STMT
PARSE #10:c=1999,e=3016,p=1,cr=1,cu=0,mis=1,r=0,dep=0,og=1,tim=1275805024007787
WAIT #10: nam='db file sequential read' ela= 314 file#=4 block#=54532 blocks=1 obj#=1307547 tim=1275805024008308
WAIT #10: nam='db file sequential read' ela= 206 file#=6 block#=20 blocks=1 obj#=1307549 tim=1275805024009235
WAIT #10: nam='db file sequential read' ela= 206 file#=6 block#=742 blocks=1 obj#=1307549 tim=1275805024009496
WAIT #10: nam='db file sequential read' ela= 207 file#=6 block#=24 blocks=1 obj#=1307549 tim=1275805024009750
EXEC #10:c=2000,e=2297,p=6,cr=2,cu=8,mis=0,r=1,dep=0,og=1,tim=1275805024010210   --实际的UPDATE发生在这里

当大量执行这类UPDATE/DELETE操作时将需要频繁地交叉访问表和索引,如果恰好表上的某个索引有较高的clustering_factor的话,那么就会形成本例中的这种性能问题了。实际上当表上有较多索引时,使用rowid来批量update/delete数据这种方式是不被推荐的,仅当表上没有索引时才可能十分高效。如果你坚持要这样做,那么可以参照上面提到的建议。

 

8.BUG!BUG!已知在9i RAC及10g中使用ASM的情况下,存在引发在适用情况下不使用”scattered read”多块读而去使用”sequential read”的BUG。如果你的问题和上述情景都不匹配,但又有大量的”db file sequential read”等待事件,那么你有可能遇到bug了。在这里列出部分已知bug:

Bug# Version Affected
Bug 7243560 – High “db file sequential read” IO times when using ASM 10.2.0.4/11.1.0.7
Bug 7243560: RAPID INCREASE IN DB FILE SEQUENTIAL READ AFTER MOVING TO ASM 10.2.0.3
Bug 9711810: EXCESSIVE DB FILE SEQUENTIAL READS WITH NON COMPLIANT BUFFER CACHE ON RAC 9.2.0.8
Bug 9276739: INSERT STATEMENT HAS SLOW PERFORMANCE WITH DB FILE SEQUENTIAL READ 10.2.0.4
Bug 8625100: EXCESSIVE DB FILE SEQUENTIAL READ ON UNDO 10.2.0.4
Bug 8669544: HIGH DB FILE SEQUENTIAL READ AND GC CR DISK READ WAIT EVENTS DURING FULL SCAN 10.2.0.4
Bug 7427133: AN INSERT CAUSES LOTS OF ‘DB FILE SEQUENTIAL READ’ WAITS FOR THE INDEX BLOCKS 9.2.0.8
Bug 8493139: INCREASE IN DB FILE SEQUENTIAL READ WAITEVENT AFTER MIGRATING TO 10 RAC/ASM 10.2.0.4
Bug 5882268: PERFORMANCE ISSUE WITH ‘DB FILE SEQUENTIAL READ’ 10.2.0.2
Bug 7415702: LOTS OF ‘DB FILE SEQUENTIAL READ’ ON UNDO 10.2.0.3
Bug 5607724: 10202 DB FILE SEQUENTIAL READ THRICE AFTER UPGRADE FROM 9I 10.2.0.2

© 2011, www.oracledatabase12g.com. 版权所有.

相关 [sql clustering factor] 推荐:

SQL调优:Clustering Factor影响数据删除速度一例

- Maclean - Oracle Clinic - 提供专业Oracle技术支持,性能调整及数据恢复服务
事情是这样的,客户有一套核心的10g业务数据库,需要针对个别大表删除2年前的归档数据,这些表都是普通的堆表(heap table),没有使用分区或其他技术. 因为考虑到不能影响在线业务,所以不能使用insert append/rename的方式来加速删除,只能老老实实地在匿名PL/SQL块里通过rowid批量删除数据,虽然慢一些但还是能接受的,具体的PL/SQL块如下:.

如何查詢impact factor

- Roger - 研究生2.0
台灣學術界瘋狂重視 SSCI、SCI,連帶著 impact factor 也成為審核的唯一指標,如果畢業後想繼續在台灣學術界發展,投稿前最好先查查 impact factor,作為選擇期刊的標準之一. 正規的方式是到 Journal Citation Reports 上去查. 網址 (需圖書館訂閱):http://admin-apps.webofknowledge.com/JCR/JCR?PointOfEntry=Home.

《推荐系统实践》关于Latent Factor Model

- - xlvector - Recommender System
Latent Factor Model,很多人称为SVD,其实是比较伪的SVD,一直是最近今年推荐系统研究的热点. 但LFM的研究一直是在评分预测问题上的,很少有人用它去生成TopN推荐的列表,而且也很少有人研究如何将这个数据用到非评分数据上. 本来这本书不准备在实践部分讲这个算法,而只准备在后面介绍学术界研究热点的时候讲这个算法.

faiss相似性搜索和向量聚类库 faiss: A library for efficient similarity search and clustering of dense vectors.

- -
Faiss是一个有效的相似性搜索和密集向量聚类的库. 它包含搜索任意大小的向量集的算法,包括不适合放入RAM的数据集. 它还包含用于评估和参数调整的支持代码. Faiss是用C ++编写的,包含Python / numpy的完整包装. 一些最有用的算法是在GPU上实现的. 它由 Facebook AI Research开发.

PL/SQL动态SQL(原创)

- - ITeye博客
使用动态SQL是在编写PL/SQL过程时经常使用的方法之一. 很多情况下,比如根据业务的需要,如果输入不同查询条件,则生成不同的执行SQL查询语句,对于这种情况需要使用动态SQL来完成. 再比如,对于分页的情况,对于不同的表,必定存在不同的字段,因此使用静态SQL则只能针对某几个特定的表来形成分页.

Derby SQL 分页

- - ITeye博客
    之前在网上看到有人问 Derby SQL 分页实现的问题,网上有人给出这样的解决方案,SQL 如下:. 其实,这样的分页查询,性能不理想,我试过在 300W 数据量中采用这种分页方式,需要 20~30秒之久;其实 Derby 10.6 以上版本有更好的分页支持,直接给出 SQL 实现如下:.

SQL Server--索引

- - CSDN博客推荐文章
         1,概念:  数据库索引是对数据表中一个或多个列的值进行排序的结构,就像一本书的目录一样,索引提供了在行中快速查询特定行的能力..             2.1优点:  1,大大加快搜索数据的速度,这是引入索引的主要原因..                             2,创建唯一性索引,保证数据库表中每一行数据的唯一性..

MySql动态SQL

- - SQL - 编程语言 - ITeye博客
13.7. 用于预处理语句的SQL语法. MySQL 5.1对服务器一方的预制语句提供支持. 如果您使用合适的客户端编程界面,则这种支持可以发挥在MySQL 4.1中实施的高效客户端/服务器二进制协议的优势. 候选界面包括MySQL C API客户端库(用于C程序)、MySQL Connector/J(用于Java程序)和MySQL Connector/NET.

sql优化

- - 数据库 - ITeye博客
是对数据库(数据)进行操作的惟一途径;. 消耗了70%~90%的数据库资源;独立于程序设计逻辑,相对于对程序源代码的优化,对SQL语句的优化在时间成本和风险上的代价都很低;. 可以有不同的写法;易学,难精通. 固定的SQL书写习惯,相同的查询尽量保持相同,存储过程的效率较高. 应该编写与其格式一致的语句,包括字母的大小写、标点符号、换行的位置等都要一致.

birt动态SQL

- - ITeye博客
birt动态SQL实现有三种方式:拼接SQL、绑定变量和让应用程序拼接,birt得到返回结果集方式. 在数据集中写SQL,如下:. 选中数据集,点script方式,在beforeOpen事件中写如下SQL:. 然后就可以了,当然,也可以不写第一步,直接所有的SQL都在beforeOpen中拼接. 但是,拼接SQL方式不仅复杂容易错,还会导致SQL注入风险.