在Hadoop上运行基于RMM中文分词算法的MapReduce程序

标签: 我的分享 algorithm hadoop map reduce parallel | 发表时间:2011-12-18 19:29 | 作者:Xiaoxia
出处:http://xiaoxia.org

我知道这个文章标题很“学术”化,很俗,让人看起来是一篇很牛B或者很装逼的论文!其实不然,只是一份普通的实验报告,同时本文也不对RMM中文分词算法进行研究。这个实验报告是我做高性能计算课程的实验里提交的。所以,下面的内容是从我的实验报告里摘录出来的,当作是我学习hadoop分享出来的一些个人经验。

实验目标

学习编写 Hadoop 上的 MapReduce 程序。
使用 Hadoop 分布式计算小说《倚天屠龙记》里的中文单词频率,比较张无忌身边的两个女人周芷若与赵敏谁在小说里的热度高。(为什么要提到倚天屠龙记呢?因为我的一位舍友最近把贾静雯演的这部戏看完了,他无时无刻不提到贾静雯演的赵敏,所以这个实验也取材自我的大学生活……)

实验原理

通过自学Hadoop的Streaming工作模式,使用Streaming可以让Hadoop运行非Java的MapReduce程序。

为了减少我们的实验时间,我们使用了以开发效率著名的Python语言来编写我们的mapper.py和reducer.py。其中,我们还使用到了一个小巧的中文分词模块smallseg.py,引用自(http://code.google.com/p/smallseg/,Apache License 2.0)。

对于中文词库,我们使用搜狗实验室提供的中文词库main.dic以及一个字库suffix.dic,均可从smallseg项目中获得。

分布式计算的输入为一个文本文件:倚天屠龙记.txt,我们从网下下载此文本资源,并且转换为utf8文本编码以方便我们在Linux下进行分词计算。

iconv -fgbk -tutf8 倚天屠龙记.txt > 倚天屠龙记utf8.txt

实验环境

NameNode:
OS: Ubuntu11.04
CPU: Intel Core I3
Memory: 512MB
IP: 125.216.244.28

DataNode1:
OS: Ubuntu11.10
CPU: Intel Pentium 4
Memory: 512MB
IP: 125.216.244.21

DataNode2:
OS: Ubuntu11.10
CPU: Intel Pentium 4
Memory: 512MB
IP: 125.216.244.22

Mapper程序

下面是mapper.py的代码。

#!/usr/bin/env python
from smallseg import SEG
import sys
seg = SEG()

for line in sys.stdin:
    wlist = seg.cut(line.strip())
    for word in wlist:
        try:
            print "%s\t1" % (word.encode("utf8"))
        except:
            pass

smallseg为一个使用RMM字符串分割算法的中文分词模块。Mapper程序的过程很简单,对每一行的中文内容进行分词,然后把结果以单词和频率的格式输出。对于所有的中文单词,都是下面的格式,

单词[tab]1

每个单词的频率都为1。Mapper并不统计每一行里的单词出现频率,我们把这个统计频率的工作交给Reducer程序。

Reducer程序

下面是reducer.py的代码.

#!/usr/bin/env python
import sys
current_word,current_count,word = None, 1, None

for line in sys.stdin:
    try:
        line = line.rstrip()
        word, count = line.split("\t", 1)
        count = int(count)
    except: continue

    if current_word == word:
        current_count += count
    else:
        if current_word:
            print "%s\t%u" % (current_word, current_count)
        current_count, current_word = count, word

if current_word == word:
    print "%s\t%u" % (current_word, current_count)

从标准输入中读取每一个单词频率,并且统计。因为这些单词已经由Hadoop为我们排好了顺序,所以我们只需要对一个单词的出现次数进行累加,当出现不同的单词的时候,我们就输出这个单词的频率,格式如下

单词[tab]频率

实验步骤

实验使用一个NameNode节点和两个DataNode节点。
首先,把所需要的文件复制到每一台主机上。这些文件都放在/home/hadoop/wc目录下。

scp -r wc [email protected]:.
scp -r wc [email protected]:.
scp -r wc [email protected]:.

运行Hadoop Job

本次任务,使用3个Mapper进程以及2个Reducer进程。因为分词的步骤最为耗时,所以我们尽量分配最多数目的Mapper进程。

hadoop@xiaoxia-vz:~/hadoop-0.20.203.0$ ./bin/hadoop jar contrib/streaming/hadoop-streaming-0.20.203.0.jar -mapper /home/hadoop/wc/mapper.py -reducer /home/hadoop/wc/reducer.py -input 2-in -output 2-out -jobconf mapred.map.tasks=3 -jobconf mapred.reduce.tasks=2
[...] WARN streaming.StreamJob: -jobconf option is deprecated, please use -D instead.
packageJobJar: [/tmp/hadoop-unjar2897218480344074444/] [] /tmp/streamjob7946660914041373523.jar tmpDir=null
[...] INFO mapred.FileInputFormat: Total input paths to process : 1
[...] INFO streaming.StreamJob: getLocalDirs(): [/tmp/mapred/local]
[...] INFO streaming.StreamJob: Running job: job_201112041409_0005
[...] INFO streaming.StreamJob: To kill this job, run:
[...] INFO streaming.StreamJob: /home/hadoop/hadoop-0.20.203.0/bin/../bin/hadoop job  -Dmapred.job.tracker=http://125.216.244.28:9001 -kill job_201112041409_0005
[...] INFO streaming.StreamJob: Tracking URL: http://localhost:50030/jobdetails.jsp?jobid=job_201112041409_0005
[...] INFO streaming.StreamJob:  map 0%  reduce 0%
[...] INFO streaming.StreamJob:  map 9%  reduce 0%
[...] INFO streaming.StreamJob:  map 40%  reduce 0%
[…] INFO streaming.StreamJob:  map 67%  reduce 12%
[...] INFO streaming.StreamJob:  map 71%  reduce 22%
[...] INFO streaming.StreamJob:  map 100%  reduce 28%
[...] INFO streaming.StreamJob:  map 100%  reduce 100%
[...] INFO streaming.StreamJob: Job complete: job_201112041409_0005
[...] INFO streaming.StreamJob: Output: 2-out

Map过程耗时:41s
Reduce过程耗时:21s
总耗时:62s

计算结果

复制计算结果到本地文件系统。

./bin/hadoop dfs -get 2-out/part* ../wc/

查看part*的部分内容:

hadoop@xiaoxia-vz:~/wc$ tail part-00000
龙的    1
龙眼    1
龙虎    2
龙被    1
龙身    2
龙镇    1
龙骨    1
龟寿    2
龟山    1
龟裂    1
hadoop@xiaoxia-vz:~/wc$ tail part-00001
龙门    85
龙飞凤舞        1
龙驾    1
龟      3
龟一    1
龟二    1
龟息    1
龟缩    1
龟蛇    3

下面,对输出的结果进行合并,并按照频率进行排序。该过程比较快,在1秒内就已经完成。

hadoop@xiaoxia-vz:~/wc$ cat part-00000 part-00001 | sort -rnk2,2 > sorted
hadoop@xiaoxia-vz:~/wc$ head sorted
的      7157
张无忌  4373
是      4199
道      3465
了      3187
我      2516
他      2454
你      2318
这      1991
那      1776

我们去掉单个字的干扰,因为我们的实验目的只对人名感兴趣。

hadoop@xiaoxia-vz:~/wc$ cat sorted | awk '{if(length($1)>=4) print $0}' | head -n 50
张无忌  4373
说道    1584
赵敏    1227
谢逊    1173
自己    1115
甚么    1034
张翠山  926
武功    867
一个    777
咱们    767
周芷若  756
教主    739
笑道    693
明教    685
一声    670
听得    634
姑娘    612
师父    606
只见    590
无忌    576
少林    555
如此    547
弟子    537
之中    527
殷素素  518
杨逍    496
他们    490
不知    484
如何    466
我们    453
两人    453
叫道    450
二人    445
今日    443
心想    433
张三丰  425
声道    425
义父    412
出来    402
虽然    395
灭绝师太        392
之下    389
这时    381
莲舟    374
心中    374
便是    371
不敢    371
俞莲    369
不能    359
身子    356

统计图表

结论

赵敏以1227票的频率完胜周芷若的756票,由此可知赵敏在《倚天屠龙记》里的热度比周芷若高。

经过本次实验,我们对 Hadoop 原理有了一定程度的了解,并且顺利的完成Mapper函数和Reducer函数的设计和测试。能够运用 Hadoop 进行简单的并行计算的实现。我们也对并行算法和串行算法的区别和设计有了更深一层的了解。此外,实验还增进了我们的合作精神,提高了我们的动手能力。

相关 [hadoop 行基 rmm] 推荐:

在Hadoop上运行基于RMM中文分词算法的MapReduce程序

- - Xiaoxia[PG]
我知道这个文章标题很“学术”化,很俗,让人看起来是一篇很牛B或者很装逼的论文. 其实不然,只是一份普通的实验报告,同时本文也不对RMM中文分词算法进行研究. 这个实验报告是我做高性能计算课程的实验里提交的. 所以,下面的内容是从我的实验报告里摘录出来的,当作是我学习hadoop分享出来的一些个人经验.

Hadoop Streaming 编程

- - 学着站在巨人的肩膀上
Hadoop Streaming是Hadoop提供的一个编程工具,它允许用户使用任何可执行文件或者脚本文件作为Mapper和Reducer,例如:. 采用shell脚本语言中的一些命令作为mapper和reducer(cat作为mapper,wc作为reducer). 本文安排如下,第二节介绍Hadoop Streaming的原理,第三节介绍Hadoop Streaming的使用方法,第四节介绍Hadoop Streaming的程序编写方法,在这一节中,用C++、C、shell脚本 和python实现了WordCount作业,第五节总结了常见的问题.

Hadoop使用(一)

- Pei - 博客园-首页原创精华区
Hadoop使用主/从(Master/Slave)架构,主要角色有NameNode,DataNode,secondary NameNode,JobTracker,TaskTracker组成. 其中NameNode,secondary NameNode,JobTracker运行在Master节点上,DataNode和TaskTracker运行在Slave节点上.

Hadoop MapReduce技巧

- - 简单文本
我在使用Hadoop编写MapReduce程序时,遇到了一些问题,通过在Google上查询资料,并结合自己对Hadoop的理解,逐一解决了这些问题. Hadoop对MapReduce中Key与Value的类型是有要求的,简单说来,这些类型必须支持Hadoop的序列化. 为了提高序列化的性能,Hadoop还为Java中常见的基本类型提供了相应地支持序列化的类型,如IntWritable,LongWritable,并为String类型提供了Text类型.

Hadoop TaskScheduler浅析

- - kouu's home
TaskScheduler,顾名思义,就是MapReduce中的任务调度器. 在MapReduce中,JobTracker接收JobClient提交的Job,将它们按InputFormat的划分以及其他相关配置,生成若干个Map和Reduce任务. 然后,当一个TaskTracker通过心跳告知JobTracker自己还有空闲的任务Slot时,JobTracker就会向其分派任务.

HADOOP安装

- - OracleDBA Blog---三少个人自留地
最近有时间看看hadoop的一些东西,而且在测试的环境上做了一些搭建的工作. 首先,安装前需要做一些准备工作. 使用一台pcserver作为测试服务器,同时使用Oracle VM VirtualBox来作为虚拟机的服务器. 新建了三个虚拟机以后,安装linux,我安装的linux的版本是redhat linux 5.4 x64版本.

Hadoop Corona介绍

- - 董的博客
Dong | 可以转载, 但必须以超链接形式标明文章原始出处和作者信息及 版权声明. 网址: http://dongxicheng.org/hadoop-corona/hadoop-corona/. Hadoop Corona是facebook开源的下一代MapReduce框架. 其基本设计动机和Apache的YARN一致,在此不再重复,读者可参考我的这篇文章 “下一代Apache Hadoop MapReduce框架的架构”.

Hadoop RPC机制

- - 企业架构 - ITeye博客
RPC(Remote Procedure Call Protocol)远程过程调用协议,它是一种通过网络从远程计算机程序上请求服务,而不需要了解底层网络技术的协议. Hadoop底层的交互都是通过 rpc进行的. 例如:datanode和namenode 、tasktracker和jobtracker、secondary namenode和namenode之间的通信都是通过rpc实现的.

Hadoop Rumen介绍

- - 董的博客
Dong | 新浪微博: 西成懂 | 可以转载, 但必须以超链接形式标明文章原始出处和作者信息及 版权声明. 网址: http://dongxicheng.org/mapreduce/hadoop-rumen-introduction/. 什么是Hadoop Rumen?. Hadoop Rumen是为Hadoop MapReduce设计的日志解析和分析工具,它能够将JobHistory 日志解析成有意义的数据并格式化存储.

Hadoop contrib介绍

- - 董的博客
Dong | 可以转载, 但必须以超链接形式标明文章原始出处和作者信息及 版权声明. 网址: http://dongxicheng.org/mapreduce/hadoop-contrib/. Hadoop Contrib是Hadoop代码中第三方公司贡献的工具包,一般作为Hadoop kernel的扩展功能,它包含多个非常有用的扩展包,本文以Hadoop 1.0为例对Hadoop Contrib中的各个工具包进行介绍.