Elasticsearch搜索中文分词优化 - 简书

标签: | 发表时间:2020-06-22 15:18 | 作者:
出处:https://www.jianshu.com

Elasticsearch 中文搜索时遇到几个问题:

    1. 当搜索关键词如:“人民币”时,如果分词将“人民币”分成“人”,“民”,“币”三个单字,那么搜索该关键词会匹配到很多包含该单字的无关内容,但是如果将该词分词成一个整词“人民币”,搜索单字如“人”字又不会匹配到包含“人民币”关键词的内容,怎么解决这个问题,既保证覆盖度又保证准确度?
    1. 搜索“RMB”时只会匹配到包含“RMB”关键词的内容,实际上,“RMB”和“人民币”是同义词,我们希望用户搜索“RMB”和“人民币”可以相互匹配,ES同义词怎么配置?
    1. 用户搜索拼音: 如"baidu",或者拼音首字母"bd",怎么匹配到"百度"这个关键词,又如用户输入"摆渡"这个词也能匹配到"百度"关键词,中文拼音匹配怎么做到?
    1. 怎么保证搜索关键词被正确分词,通常我们会采用自定义词典来做,那么怎么获取自定义词典?

接下来从以下几点讲一下怎么ES中文分词

  1. 中文分词器
  2. ES 分词流程之 analysis,analyzer,filter,tokenizer
  3. ES内置分词器
  4. 自定义analyzer
  5. ES同义词功能实现
  6. ES拼写纠错
  7. ES自定义词典获取
  8. 停用词

1.IK 分词器

  • 1,Elasticsearch中文分词我们采用Ik分词,ik有两种分词模式,ik_max_word,和ik_smart模式;
    • ik_max_word 和 ik_smart 什么区别?

ik_max_word: 会将文本做最细粒度的拆分,比如会将“中华人民共和国国歌”拆分为“中华人民共和国,中华人民,中华,华人,人民共和国,人民,人,民,共和国,共和,和,国国,国歌”,会穷尽各种可能的组合;
ik_smart: 会做最粗粒度的拆分,比如会将“中华人民共和国国歌”拆分为“中华人民共和国,国歌”。

索引时,为了提供索引的覆盖范围,通常会采用ik_max_word分析器,会以最细粒度分词索引,搜索时为了提高搜索准确度,会采用ik_smart分析器,会以粗粒度分词
字段mapping设置如下:

    "author": {
            "type": "string",
            "analyzer": "ik",
            "search_analyzer": "ik_smart"
        }

2.Elasticsearch之分析(analysis)和分析器(analyzer)

analysis索引分析模块充当analyzer分析器的可配置注册表,通过analyzer对文档索引阶段的字段和搜索String进行处理,自定义analyzer时,通常需要character filter tokenizer token filters来完成

2.1 character filter 字符过滤器

首先字符串经过过滤器(character filter),他们的工作是在分词前处理字符串。字符过滤器能够去除HTML标记,例如把“<a>”变成“a

2.2 tokenizer 分词器

英文分词可以根据空格将单词分开,中文分词比较复杂,可以采用机器学习算法来分词

2.2 token filters 表征过滤器

最后,每个词都通过所有表征过滤(token filters),他可以修改词(例如将“Quick”转为小写),去掉词(例如停用词像“a”、“and”、“the”等等),或者增加词(例如同义词像“a”、“and”、“the”等等)或者增加词(例如同义词像“jump”和“leap”)。

2.3 ES分词流程

character filter-->>tokenizer-->>token filters

2.5 自定义analyzer

官网example:

    index :
    analysis :
        analyzer :
            myAnalyzer2 :
                type : custom
                tokenizer : myTokenizer1
                filter : [myTokenFilter1, myTokenFilter2]
                char_filter : [my_html]
                position_increment_gap: 256
        tokenizer :
            myTokenizer1 :
                type : standard
                max_token_length : 900
        filter :
            myTokenFilter1 :
                type : stop
                stopwords : [stop1, stop2, stop3, stop4]
            myTokenFilter2 :
                type : length
                min : 0
                max : 2000
        char_filter :
              my_html :
                type : html_strip
                escaped_tags : [xxx, yyy]
                read_ahead : 1024
2.6 分词mapping设置

通常为了保证索引时覆盖度和搜索时准确度,索引分词器采用ik_max_word,搜索分析器采用ik_smart模式

    "content": {
          "type": "string",
          "analyzer": "ik_max_word",
          "search_analyzer": "ik_smart"
        }
1.7 如果更改了mapping分词器,需要重新索引数据才能生效
    POST /_reindex
{
  "source": {
    "index": "twitter"
  },
  "dest": {
    "index": "new_twitter"
  }
}

因为倒排索引中的数据是索引时由分词器来处理的,如果分词器有变化,那么搜索时query关键词即使和doc中关键词相同,但是因为分词器的原因,分出来的词会出现不匹配的情况,因此当mapping或者分词器字典同义词词典等发生变化时,需要reindex索引数据

1.8 分词测试
    http://127.0.0.1:9200/index/_analyze?analyzer=ik_max_word&pretty=true&text=中国驻洛杉矶
1.8 更改别名,不重启服务切换索引
    POST /_aliases

{  
  "actions": [  
    {  
      "remove": {  
        "index": "oldindex",  
        "alias": "alias_oldindex"  
      }  
    },  
    {  
      "add": {  
        "index": "newindex",  
        "alias": "alias_oldindex"  
      }  
    }  
  ]  
}

2 同义词

2.1 建议同义词词典

  • elasticsearch /config/analysis 下建议同义词词典文件pro_synonym.txt,采用UTF-8编码,写入内容
  • 同义词内容格式 ,注意标点符号使用英文符号
    • 启航 => 起航 : "=>"左边的词全部会被右边的词替换
    • 启航,起航 :使用","英文逗号分隔,两个词是互等的,分词时会同时分成两个词进行索引或者检索,如"启航"会被分成"启航","起航"两个词分别建立索引或者去倒排索引检索

自定义添加同义词通过ik分词器

    "settings": {
        "analysis": {
            "filter": {
                "my_synonym_filter": {
                    "type": "synonym",
                    "synonyms_path": "analysis/pro_synonym.txt"
                }
            },
            "analyzer": {
                "ik_syno_max_word": {
                    "tokenizer": "ik",
                    "filter": "my_synonym_filter"
                },
                "ik_syno_smart": {
                    "tokenizer": "ik_smart",
                    "filter": "my_synonym_filter"
                }
            }
        }
    }

想查看同义词效果或者测试分词效果

    http://192.168.0.100:9200/index/_analyze?analyzer=ik_max_word&pretty=true&text=启航

3 Suggest分词

suggest词需要对拼音前缀,全拼,中文进行前缀匹配,例如:“百度”一词,键入"baidu","bd","百"都必须匹配到,因此在索引的时候需要一词分多个分词器来索引保存,中文采用单字分词,拼音首字母和全拼需要自定义analyzer来索引。

  • Elasticsearch Suggest setting mapping设置参考如下
    {
    "mappings": {
        "suggest": {
            "properties": {
                "full_pinyin": {
                    "type": "completion",
                    "analyzer": "full_pinyin_analyzer",
                    "payloads": true,
                    "preserve_separators": false,
                    "preserve_position_increments": true,
                    "max_input_length": 50
                },
                "prefix_pinyin": {
                    "type": "completion",
                    "analyzer": "prefix_pinyin_analyzer",
                    "search_analyzer": "standard",
                    "payloads": true,
                    "preserve_separators": false,
                    "preserve_position_increments": true,
                    "max_input_length": 50
                },
                "suggestText": {
                    "type": "completion",
                    "analyzer": "standard",
                    "payloads": true,
                    "preserve_separators": false,
                    "preserve_position_increments": true,
                    "max_input_length": 50
                }
            }
        }
    },
    "settings": {
        "index": {
            "analysis": {
                "filter": {
                    "_pattern": {
                        "type": "pattern_capture",
                        "preserve_original": "1",
                        "patterns": ["([0-9])", "([a-z])"]
                    },
                    "full_pinyin": {
                        "keep_first_letter": "false",
                        "keep_none_chinese_in_first_letter": "false",
                        "type": "pinyin",
                        "keep_original": "false",
                        "keep_full_pinyin": "true"
                    },
                    "prefix_pinyin": {
                        "keep_first_letter": "true",
                        "none_chinese_pinyin_tokenize": "false",
                        "type": "pinyin",
                        "keep_original": "false",
                        "keep_full_pinyin": "false"
                    }
                },
                "analyzer": {
                    "full_pinyin_analyzer": {
                        "filter": ["lowercase", "full_pinyin"],
                        "tokenizer": "standard"
                    },
                    "prefix_pinyin_analyzer": {
                        "filter": ["lowercase", "prefix_pinyin"],
                        "tokenizer": "standard"
                    }
                }
            }
        }
    }
}

4 中文拼音搜索

1.关于搜索关键词会将不相关词搜索出来
  • 解决单字搜索的一种方案
    • 问题:搜索时,搜索牙膏,需检索出包含“牙膏”二字的内容,过滤掉包含“牙”或者“膏”的内容,但是搜索单字“牙”或者“膏”时需要将牙膏匹配出来
    • 方案:加入单字字典,ik_max_word分词时,会把所有形式分出来,因此单字字典,此分词模式下会将单字索引起来,ik_smart会按照最粗粒度分词,搜索关键词时不会匹配单字内容
    • 索引和搜索采用不同分词器 "analyzer": "ik", "search_analyzer": "ik_smart"
    • 过程:更改mapping,searchAnalyzer=ik_smart,reindex,reindex现有数据 参考资料
    POST /_reindex
{
  "source": {
    "index": "twitter"
  },
  "dest": {
    "index": "new_twitter"
  }
}

部分内容有待完善

相关 [elasticsearch 搜索 中文分词] 推荐:

Elasticsearch搜索中文分词优化 - 简书

- -
Elasticsearch 中文搜索时遇到几个问题:. 当搜索关键词如:“人民币”时,如果分词将“人民币”分成“人”,“民”,“币”三个单字,那么搜索该关键词会匹配到很多包含该单字的无关内容,但是如果将该词分词成一个整词“人民币”,搜索单字如“人”字又不会匹配到包含“人民币”关键词的内容,怎么解决这个问题,既保证覆盖度又保证准确度?.

ElasticSearch中文分词ik安装

- - ITeye博客
下载编译好的安装包,解压缩就可以直接使用. 自己编译的版本在安装插件时可能会出现一些问题. 上面这一步很简单,没有出现任何问题就通过了,然而在安装ik时走了很多弯路,为防止今后出现类似情况将此次安装过程中出现的问题记录下来. 从elasticsearch-rtf中下载的elasticsearch-analysis-ik-1.2.6.jar直接拷贝到.

Elasticsearch:使用 Elasticsearch 进行语义搜索

- - 掘金 后端
在数字时代,搜索引擎在通过浏览互联网上的大量可用信息来检索数据方面发挥着重要作用. 此方法涉及用户在搜索栏中输入特定术语或短语,期望搜索引擎返回与这些确切关键字匹配的结果. 虽然关键字搜索对于简化信息检索非常有价值,但它也有其局限性. 主要缺点之一在于它对词汇匹配的依赖. 关键字搜索将查询中的每个单词视为独立的实体,通常会导致结果可能与用户的意图不完全一致.

[Elasticsearch] 分布式搜索

- - 编程语言 - ITeye博客
本文翻译自Elasticsearch官方指南的 Distributed Search Execution一章. 在继续之前,我们将绕一段路来谈谈在分布式环境中,搜索是如何执行的. 和在分布式文档存储(Distributed Document Store)中讨论的基本CRUD操作相比,这个过程会更加复杂一些.

ElasticSearch入门-搜索如此简单

- - ITeye博客
搜索引擎我也不是很熟悉,但是数据库还是比较了解. 可以把搜索理解为数据库的like功能的替代品. 第一、like的效率不行,在使用like时,一般都用不到索引,除非使用前缀匹配,才能用得上索引. 第二、like的不能做到完全的模糊匹配. 比如like '%化痰冲剂%'就不能把”化痰止咳冲剂“搜索出来.

Elasticsearch搜索类型(query type)详解

- - ITeye博客
欢迎发送邮件至 [email protected]. 请支持原创 http://donlianli.iteye.com/blog/2094305. es在查询时,可以指定搜索类型为QUERY_THEN_FETCH,QUERY_AND_FEATCH,DFS_QUERY_THEN_FEATCH和DFS_QUERY_AND_FEATCH.

基于Elasticsearch实现搜索推荐

- - GinoBeFunny
在 基于Elasticsearch实现搜索建议一文中我们曾经介绍过如何基于Elasticsearch来实现搜索建议,而本文是在此基础上进一步优化搜索体验,在当搜索无结果或结果过少时提供推荐搜索词给用户. 在根据用户输入和筛选条件进行搜索后,有时返回的是无结果或者结果很少的情况,为了提升用户搜索体验,需要能够给用户推荐一些相关的搜索词,比如用户搜索【迪奥】时没有找到相关的商品,可以推荐搜索【香水】、【眼镜】等关键词.

基于Elasticsearch实现搜索建议

- - GinoBeFunny
搜索建议是搜索的一个重要组成部分,一个搜索建议的实现通常需要考虑建议词的来源、匹配、排序、聚合、关联的文档数和拼写纠错等,本文介绍一个基于Elasticsearch实现的搜索建议. 电商网站的搜索是最基础最重要的功能之一,搜索框上面的良好体验能为电商带来更高的收益,我们先来看看淘宝、京东、亚马逊网站的搜索建议.

【翻译】用 elasticsearch 和 elasticsearch 为数十亿次客户搜索提供服务

- - IT技术博客大学习
标签:   elasticsearch   elasticsearch   搜索.    原文地址: http://www.elasticsearch.org/blog/using-elasticsearch-and-logstash-to-serve-billions-of-searchable-events-for-customers/.

Elasticsearch分布式搜索架构原理 | Elasticsearch权威指南(中文版)

- -
在继续之前,我们将绕道讲一下搜索是如何在分布式环境中执行的. 它比我们之前讲的基础的增删改查(create-read-update-delete,CRUD)请求要复杂一些. 本章的信息只是出于兴趣阅读,使用Elasticsearch并不需要理解和记住这里的所有细节. 阅读这一章只是增加对系统如何工作的了解,并让你知道这些信息以备以后参考,所以别淹没在细节里.