Hadoop安全机制介绍

标签: Hadoop-MapReduce Hadoop Hadoop安全 | 发表时间:2012-03-04 19:37 | 作者:Dong
出处:http://dongxicheng.org

1.背景

1.1 共享Hadoop集群

当前大一点的公司都采用了共享Hadoop集群的模式,这种模式可以减小维护成本,且避免数据过度冗余,增加硬件成本。共享Hadoop是指:(1)管理员把研发人员分成若干个队列,每个队列分配一定量的资源,每个用户或者用户组 只能使用某个队列中得资源;(2)HDFS上存有各种数据,有公用的,有机密的,不同的用户可以访问不同的数据。

共享集群类似于云计算或者云存储,面临的一个最大问题是安全。

1.2 几个概念

安全认证:确保某个用户是自己声称的那个用户。

安全授权:确保某个用户只能做他允许的那些操作

User:Hadoop用户,可以提交作业,查看自己作业状态,查看HDFS上的文件

Service:Hadoop中的服务组件,包括:namenode,jobtracker,tasktracker,datanode

1.3  Hadoop安全机制现状

Hadoop 一直缺乏安全机制,主要表现在以下几个方面:

(1) User to Service

[1] Namenode 或者jobtracker 缺乏安全认证机制

Client的用户名和用户组名由自己指定。

如果你不指定用户名和用户组,Hadoop会调用linux命令“whoami”获取当前linux用户名和用户组,并添加到作业的user.name和group.name两个属性中,这样,作业被提交到JobTracker后,JobTracker直接读取这两个属性(不经过验证),将该作业提交到对应队列(用户名/用户组与队列的对应关系由专门一个配置文件配置,详细可参考fair scheduler或者capacity scheduler相关文档)中。如果你可以控制你提交作业的那台client机器,你可以以任何身份提交作业,进而偷偷使用原本属于别人的资源。

比如:你在程序中使用以下代码:

conf.set(“user.name”, root);

conf.ser(“group.name”, root);

便可以以root身份提交作业。

[2] DataNode 缺乏安全授权机制

用户只要知道某个block的blockID,便可以绕过namenode直接从datanode上读取该block;用户可以向任意datanode上写block。

[3] JobTracker 缺乏安全授权机制

用户可以修改或者杀掉任意其他用户的作业;用户可以修改JobTracker的持久化状态。

(2) Service to service 安全认证

Datanode与TaskTracker缺乏安全授权机制,这使得用户可以随意启动假的datanode和tasktracker,如:

你可以直接到已经启动的某个TaskTracker上启动另外一个tasktracker:

./hadoop-daemon.sh start datanode

(3 )磁盘或者通信连接没有经过加密

2. Hadoop安全机制

为了增强Hadoop的安全机制, 从2009年起, Apache专门抽出一个团队,为Hadoop增加安全认证和授权机制,至今为止,已经可用。

Apache Hadoop 1.0.0版本和Cloudera CDH3之后的版本添加了安全机制,如果你将Hadoop升级到这两个版本,可能会导致Hadoop的一些应用不可用。

Hadoop提供了两种安全机制:Simple和 Kerberos。Simple机制(默认情况,Hadoop采用该机制)是SAAS协议与delegation token整合机制。 也就是说,用户提交作业时,你说你是XXX(在JobConf的user.name中说明),则在JobTracker端要进行核实,包括两部分核实,一是你到底是不是这个人,即通过检查执行当前代码的人与user.name中的用户是否一致;然后检查ACL(Access Control List)配置文件(由管理员配置),看你是否有提交作业的权限。一旦你通过验证,会获取HDFS或者mapreduce授予的delegation token(访问不同模块由不同的delegation token),之后的任何操作,比如访问文件,均要检查该token是否存在,且使用者跟之前注册使用该token的人是否一致。

3. RPC安全机制

在Hadoop RP中添加了权限认证授权机制。当用户调用RPC时,用户的login name会通过RPC头部传递给RPC,之后RPC使用Simple Authentication and Security Layer(SASL)确定一个权限协议(支持Kerberos和DIGEST-MD5两种),完成RPC授权。

具体参考: https://issues.apache.org/jira/browse/HADOOP-6419

4.HDFS安全机制

Client获取namenode初始访问认证(使用kerberos)后,会获取一个delegation token,这个token可以作为接下来访问HDFS或者提交作业的凭证。

同样,为了读取某个文件,client首先要与namenode交互,获取对应block的的block access token,然后到相应的datanode上读取各个block,而datanode在初始启动向namenode注册时,已经提前获取了这些token,当client要从TaskTracker上读取block时,首先验证token,通过后才允许读取。

5. MapReduce安全机制

【Job Submission

所有关于作业的提交或者作业运行状态的追踪均是采用带有Kerberos认证的RPC实现的。授权用户提交作业时,JobTracker会为之生成一个delegation token,该token将被作为job的一部分存储到HDFS上并通过RPC分发给各个TaskTracker,一旦job运行结束,该token失效。

【Task

用户提交作业的每个task均是以用户身份启动的,这样,一个用户的task便不可以向TaskTracker或者其他用户的task发送操作系统信号,最其他用户造成干扰。这要求为每个用户在所有TaskTracker上建一个账号。

【shuffle】

当一个map task运行结束时,它要将计算结果告诉管理它的TaskTracker,之后每个reduce task会通过HTTP向该TaskTracker请求自己要处理的那块数据,Hadoop应该确保其他用户不可以获取map task的中间结果,其做法是:reduce task对“请求URL”和“当前时间”计算HMAC-SHA1值,并将该值作为请求的一部分发动给TaskTracker,TaskTracker收到后会验证该值的正确性。

6.WebUI安全机制

这一块需要针对每个用户单独配置。

7.高层服务的安全机制

你可能会在Hadoop之上使用Oozie,HBase,Cassandra等开源软件,为此,你需要在这几个软件的配置文件和Hadoop配置文件中添加权限,具体方法参考: https://ccp.cloudera.com/display/CDHDOC/CDH3+Security+Guide

8.总结

下面对Hadoop在安全方面的改动进行汇总:

(1) HDFS

命令行不变,WEB UI添加了权限管理

(2) MapReduce添加了ACL

包括:

管理员可在配置文件中配置允许访问的user和group列表

用户提交作业时,可知道哪些用户或者用户组可以查看作业状态,使用参数-D mapreduce.job.acl-view-job

用户提交作业时,可知道哪些用户或者用户组可以修改或者杀掉job,使用参数:-D mapreduce.job.acl-modify-job

(3)MapReduce系统目录(即:mapred.system.dir,用户在客户端提交作业时,JobClient会将作业的job.jar,job.xml和job.split等信息拷贝到该目录下)访问权限改为700

(4)所有task以作业拥有者身份运行,而不是启动TaskTracker的那个角色,这

使用了setuid程序(C语言实现)运行task。 【注】如果你以hadoop用启动了Hadoop集群,则TaskTracker上所有task均以hadoop用户身份运行,这很容易使task之间相互干扰,而加了安全机制后,所有task以提交用户的身份运行,如:用户user1提交了作业,则它的所有task均以user1身份运行。

(5)Task对应的临时目录访问权限改为700

(6)DistributedCache是安全的

DistribuedCache分别两种,一种是shared,可以被所有作业共享,而private的只能被该用户的作业共享。

9.有用的资料

(1 Map and Reduce tasks should run as the user who submitted the job

(2 Security features for Map/Reduce

(包含一个pdf 文件,里面有关于Hadoop 安全机制的详细说明)

(3 Hadoop Security DesignJust Add Kerberos? Really?

(4 hadoop-security-preview

(5 hadoop-security indetails in hadoop summit 2010

(6) 安装Hadoop Kerbores方法

原创文章,转载请注明: 转载自 董的博客

本文链接地址: http://dongxicheng.org/mapreduce/hadoop-security/


Copyright © 2008
This feed is for personal, non-commercial use only.
The use of this feed on other websites breaches copyright. If this content is not in your news reader, it makes the page you are viewing an infringement of the copyright. (Digital Fingerprint:
)

相关 [hadoop 安全] 推荐:

Hadoop安全机制介绍

- - 董的博客
1.1 共享Hadoop集群. 当前大一点的公司都采用了共享Hadoop集群的模式,这种模式可以减小维护成本,且避免数据过度冗余,增加硬件成本. 共享Hadoop是指:(1)管理员把研发人员分成若干个队列,每个队列分配一定量的资源,每个用户或者用户组 只能使用某个队列中得资源;(2)HDFS上存有各种数据,有公用的,有机密的,不同的用户可以访问不同的数据.

Hadoop Kerberos安全机制介绍

- - 董的博客
Dong | 可以转载, 但必须以超链接形式标明文章原始出处和作者信息及 版权声明. 网址: http://dongxicheng.org/mapreduce/hadoop-kerberos-introduction/. 在Hadoop1.0.0或者CDH3 版本之前, hadoop并不存在安全认证一说.

Hadoop Streaming 编程

- - 学着站在巨人的肩膀上
Hadoop Streaming是Hadoop提供的一个编程工具,它允许用户使用任何可执行文件或者脚本文件作为Mapper和Reducer,例如:. 采用shell脚本语言中的一些命令作为mapper和reducer(cat作为mapper,wc作为reducer). 本文安排如下,第二节介绍Hadoop Streaming的原理,第三节介绍Hadoop Streaming的使用方法,第四节介绍Hadoop Streaming的程序编写方法,在这一节中,用C++、C、shell脚本 和python实现了WordCount作业,第五节总结了常见的问题.

Hadoop使用(一)

- Pei - 博客园-首页原创精华区
Hadoop使用主/从(Master/Slave)架构,主要角色有NameNode,DataNode,secondary NameNode,JobTracker,TaskTracker组成. 其中NameNode,secondary NameNode,JobTracker运行在Master节点上,DataNode和TaskTracker运行在Slave节点上.

Hadoop MapReduce技巧

- - 简单文本
我在使用Hadoop编写MapReduce程序时,遇到了一些问题,通过在Google上查询资料,并结合自己对Hadoop的理解,逐一解决了这些问题. Hadoop对MapReduce中Key与Value的类型是有要求的,简单说来,这些类型必须支持Hadoop的序列化. 为了提高序列化的性能,Hadoop还为Java中常见的基本类型提供了相应地支持序列化的类型,如IntWritable,LongWritable,并为String类型提供了Text类型.

Hadoop TaskScheduler浅析

- - kouu's home
TaskScheduler,顾名思义,就是MapReduce中的任务调度器. 在MapReduce中,JobTracker接收JobClient提交的Job,将它们按InputFormat的划分以及其他相关配置,生成若干个Map和Reduce任务. 然后,当一个TaskTracker通过心跳告知JobTracker自己还有空闲的任务Slot时,JobTracker就会向其分派任务.

HADOOP安装

- - OracleDBA Blog---三少个人自留地
最近有时间看看hadoop的一些东西,而且在测试的环境上做了一些搭建的工作. 首先,安装前需要做一些准备工作. 使用一台pcserver作为测试服务器,同时使用Oracle VM VirtualBox来作为虚拟机的服务器. 新建了三个虚拟机以后,安装linux,我安装的linux的版本是redhat linux 5.4 x64版本.

Hadoop Corona介绍

- - 董的博客
Dong | 可以转载, 但必须以超链接形式标明文章原始出处和作者信息及 版权声明. 网址: http://dongxicheng.org/hadoop-corona/hadoop-corona/. Hadoop Corona是facebook开源的下一代MapReduce框架. 其基本设计动机和Apache的YARN一致,在此不再重复,读者可参考我的这篇文章 “下一代Apache Hadoop MapReduce框架的架构”.

Hadoop RPC机制

- - 企业架构 - ITeye博客
RPC(Remote Procedure Call Protocol)远程过程调用协议,它是一种通过网络从远程计算机程序上请求服务,而不需要了解底层网络技术的协议. Hadoop底层的交互都是通过 rpc进行的. 例如:datanode和namenode 、tasktracker和jobtracker、secondary namenode和namenode之间的通信都是通过rpc实现的.

Hadoop Rumen介绍

- - 董的博客
Dong | 新浪微博: 西成懂 | 可以转载, 但必须以超链接形式标明文章原始出处和作者信息及 版权声明. 网址: http://dongxicheng.org/mapreduce/hadoop-rumen-introduction/. 什么是Hadoop Rumen?. Hadoop Rumen是为Hadoop MapReduce设计的日志解析和分析工具,它能够将JobHistory 日志解析成有意义的数据并格式化存储.