- - 非技术 - ITeye博客
最近一直在研究ES集群,也看了很多篇前辈们总结的博客,同事借鉴了官方给出的一些建议,做了一下几点总结,希望对后来者有用:. 为了防止ES进程的内存被置换到磁盘上(会导致在检索的时候发生内存交换导致检索速度迟缓)引起性能急速下降. 候可以把config/elasticsearch.yml中的bootstrap.mlockall设置为true就可以了.
- - 行业应用 - ITeye博客
在一般的关系型数据库中,都支持连接操作. 在ES这种分布式方案中进行连接操作,代价是十分昂贵的. 不过ES也提供了相类似的操作,支持水平任意扩展,实现连接的效果. 其他内容, 参考Elasticsearch官方指南整理. 在ES中支持两种连接方式:嵌套查询 和 has_child、has_parent父子查询.
- - 互联网 - ITeye博客
Elasticsearch是目前大数据领域最热门的技术栈之一,经过近8年的发展,已从0.0.X版升级至6.X版本,虽然增加了很多的特性和功能,但是在主体架构上,还是没有太多的变化. 下面就把我对于ES使用实践的一些经验总结一下,供大家参考;也请大家拍砖. 如果有条件,尽可能使用SSD硬盘, 不错的CPU.
- -
ElasticSearch能够以接近实时的速度提供数据操作和搜索功能. 在默认情况下,从索引/更新/删除数据到出现在搜索结果之间,你可能会感受到有1秒的延迟时间(刷新间隔). 这是与SQL等其他平台的一个重要区别,这些平台在完成事务之后,它们的数据立即可用. 先前,我们已经知道如何索引一个单个的文档.
- - 企业架构 - ITeye博客
随着按段(per-segment)搜索的发展, 一个新的文档从索引到可被搜索的延迟显著降低了. 新文档在几分钟之内即可被检索,但这样还是不够快. 提交(Commiting)一个新的段到磁盘需要一个 . fsync 来确保段被物理性地写入磁盘,这样在断电的时候就不会丢失数据. 但是 fsync 操作代价很大; 如果每次索引一个文档都去执行一次的话会造成很大的性能问题.
- - InfoQ推荐
搜索引擎现在是用得越来越多了,比如 日志系统用到的 ELK 中的 E 就是 搜索引擎 Elasticsearch(简称 ES). 那对于搜索这种技术来说,最看重的是搜索的结果的准确性和搜索的响应时间. ES 的准确性可以通过 倒排索引算法来保证,那响应时间就需要磁盘或缓存来支持了,那么磁盘和缓存会带来哪些坑呢.
- - DockOne.io
近期官网给出了 RedisJson(RedisSearch)的性能测试报告,可谓碾压其他 NoSQL. 下面是核心的报告内容,先上结论:. 对于隔离写入(isolated writes),RedisJSON 比 MongoDB 快 5.4 倍,比 ElasticSearch 快 200 倍以上. 对于隔离读取(isolated reads),RedisJSON 比 MongoDB 快 12.7 倍,比 ElasticSearch 快 500 倍以上.
- - Gea-Suan Lin's BLOG
MySQL InnoDB 指的 Partial Index 是:. An index that represents only part of a column value, typically the first N characters (the prefix) of a long VARCHAR value..
- -
在电商项目中,物理库存系统是个极其重要的系统,订单支付后,就会开始来占用物理库存. 一般情况下,库存系统都是要分库的,因为主要的操作是写操作,例如占用/释放/取消等写操作. 使用分库可以降低数据库写的压力. 尽管写操作为主,但是读操作也是有的. 比如说,库存占用的时候,得先查询是否有库存,而这个查询操作并不都会带上分库因子(用于路由到具体的某个数据库),而是一些比较宽松的查询条件,这些查询条件对应的数据可能分布在不同的数据库上.
- - 学习日志
为了防止ES集群中单点问题,一般都需要对集群节点做高可用性,当发生单点问题时,也可以向外正常提供服务. 这里主要记录一下节点的加入、离开和选举. 集群安装教程请参考: https://www.elastic.co/guide/en/elasticsearch/reference/current/install-elasticsearch.html.