Simhash算法原理和网页查重应用

标签: 技术荟萃 | 发表时间:2012-05-24 15:53 | 作者:黄言之
出处:http://blog.sina.com.cn/netreview

传统的hash算法只负责将原始内容尽量均匀随机地映射为一个签名值,原理上相当于伪随机数产生算法。产生的两个签名,如果相等,说明原始内容在一定概率下是相等的;如果不相等,除了说明原始内容不相等外,不再提供任何信息,因为即使原始内容只相差一个字节,所产生的签名也很可能差别极大。从这个意义上来说,要设计一个hash算法,对相似的内容产生的签名也相近,是更为艰难的任务,因为它的签名值除了提供原始内容是否相等的信息外,还能额外提供不相等的原始内容的差异程度的信息。

而Google的simhash算法产生的签名,可以用来比较原始内容的相似度时,便很想了解这种神奇的算法的原理。出人意料,这个算法并不深奥,其思想是非常清澈美妙的。

Simhash算法

simhash算法的输入是一个向量,输出是一个f位的签名值。为了陈述方便,假设输入的是一个文档的特征集合,每个特征有一定的权重。比如特征可以是文档中的词,其权重可以是这个词出现的次数。simhash算法如下:

1,将一个f维的向量V初始化为0;f位的二进制数S初始化为0;

2,对每一个特征:用传统的hash算法对该特征产生一个f位的签名b。对i=1到f:

如果b的第i位为1,则V的第i个元素加上该特征的权重;

否则,V的第i个元素减去该特征的权重。 

3,如果V的第i个元素大于0,则S的第i位为1,否则为0;

4,输出S作为签名。

image

算法几何意义和原理

这个算法的几何意义非常明了。它首先将每一个特征映射为f维空间的一个向量,这个映射规则具体是怎样并不重要,只要对很多不同的特征来说,它们对所对应的向量是均匀随机分布的,并且对相同的特征来说对应的向量是唯一的就行。比如一个特征的4位hash签名的二进制表示为1010,那么这个特征对应的 4维向量就是(1, -1, 1, -1) T,即hash签名的某一位为1,映射到的向量的对应位就为1,否则为-1。然后,将一个文档中所包含的各个特征对应的向量加权求和,加权的系数等于该特征的权重。得到的和向量即表征了这个文档,我们可以用向量之间的夹角来衡量对应文档之间的相似度。最后,为了得到一个f位的签名,需要进一步将其压缩,如果和向量的某一维大于0,则最终签名的对应位为1,否则为0。这样的压缩相当于只留下了和向量所在的象限这个信息,而64位的签名可以表示多达2 64个象限,因此只保存所在象限的信息也足够表征一个文档了。

明确了算法了几何意义,使这个算法直观上看来是合理的。但是,为何最终得到的签名相近的程度,可以衡量原始文档的相似程度呢?这需要一个清晰的思路和证明。在simhash的发明人Charikar的论文中[2]并没有给出具体的simhash算法和证明,以下列出我自己得出的证明思路。

Simhash是由随机超平面hash算法演变而来的,随机超平面hash算法非常简单,对于一个n维向量v,要得到一个f位的签名(f<<n),算法如下:

1,随机产生f个n维的向量r1,…rf;

2,对每一个向量ri,如果v与ri的点积大于0,则最终签名的第i位为1,否则为0.

这个算法相当于随机产生了f个n维超平面,每个超平面将向量v所在的空间一分为二,v在这个超平面上方则得到一个1,否则得到一个0,然后将得到的 f个0或1组合起来成为一个f维的签名。如果两个向量u, v的夹角为θ,则一个随机超平面将它们分开的概率为θ/π,因此u, v的签名的对应位不同的概率等于θ/π。所以,我们可以用两个向量的签名的不同的对应位的数量,即汉明距离,来衡量这两个向量的差异程度。

Simhash算法与随机超平面hash是怎么联系起来的呢?在simhash算法中,并没有直接产生用于分割空间的随机向量,而是间接产生的:第 k个特征的hash签名的第i位拿出来,如果为0,则改为-1,如果为1则不变,作为第i个随机向量的第k维。由于hash签名是f位的,因此这样能产生 f个随机向量,对应f个随机超平面。下面举个例子:

假设用5个特征w1,…,w5来表示所有文档,现要得到任意文档的一个3维签名。假设这5个特征对应的3维向量分别为:

h(w1) = (1, -1, 1) T

h(w2) = (-1, 1, 1) T

h(w3) = (1, -1, -1) T

h(w4) = (-1, -1, 1) T

h(w5) = (1, 1, -1) T

按simhash算法,要得到一个文档向量d=(w1=1, w2=2, w3=0, w4=3, w5=0) T的签名,

先要计算向量m = 1*h(w1) + 2*h(w2) + 0*h(w3) + 3*h(w4) + 0*h(w5) = (-4, -2, 6) T

然后根据simhash算法的步骤3,得到最终的签名s=001。

上面的计算步骤其实相当于,先得到3个5维的向量,第1个向量由h(w1),…,h(w5)的第1维组成:

r1=(1,-1,1,-1,1) T

第2个5维向量由h(w1),…,h(w5)的第2维组成:

r2=(-1,1,-1,-1,1) T

同理,第3个5维向量为:

r3=(1,1,-1,1,-1) T.

按随机超平面算法的步骤2,分别求向量d与r1,r2,r3的点积:

d T r1=-4 < 0,所以s1=0;

d T r2=-2 < 0,所以s2=0;

d T r3=6 > 0,所以s3=1.

故最终的签名s=001,与simhash算法产生的结果是一致的。

从上面的计算过程可以看出,simhash算法其实与随机超平面hash算法是相同的,simhash算法得到的两个签名的汉明距离,可以用来衡量原始向量的夹角。这其实是一种降维技术,将高维的向量用较低维度的签名来表征。衡量两个内容相似度,需要计算汉明距离,这对给定签名查找相似内容的应用来说带来了一些计算上的困难;我想,是否存在更为理想的simhash算法,原始内容的差异度,可以直接由签名值的代数差来表示呢?

大规模网页的近似查重

详细内容可以看WWW07的 Detecting Near-Duplicates for Web Crawling

例如,文本的特征可以选取分词结果,而权重可以用df来近似。

Simhash具有两个“冲突的性质”:

1. 它是一个hash方法

2. 相似的文本具有相似的hash值,如果两个文本的simhash越接近,也就是汉明距离越小,文本就越相似。

因此海量文本中查重的任务转换位如何在海量simhash中快速确定是否存在汉明距离小的指纹。也就是:在n个f-bit的指纹中,查询汉明距离小于k的指纹。

在文章的实验中,simhash采用64位的哈希函数。在80亿网页规模下汉明距离=3刚好合适。

因此任务的f-bit=64 , k=3 , n= 8*10^11

任务清晰,首先看一下两种很直观的方法:

1. 枚举出所有汉明距离小于3的simhash指纹,对每个指纹在80亿排序指纹中查询。(这种方法需要进行C(64,3)=41664词的simhash指纹,再为每个进行一次查询)

2. 所有接近的指纹排序到一起,这至多有41664排序可能,需要庞大的空间。提出的方法介于两者之间,合理的空间和时间的折中。

• 假设我们有一个已经排序的容量为2 d,f-bit指纹集。看每个指纹的高d位。该高低位具有以下性质:尽管有很多的2 d位组合存在,但高d位中有只有少量重复的。

• 现在找一个接近于d的数字d’,由于整个表是排好序的,所以一趟搜索就能找出高d’位与目标指纹F相同的指纹集合f’。因为d’和d很接近,所以找出的集合f’也不会很大。

• 最后在集合f’中查找 和F之间海明距离为k的指纹也就很快了。

• 总的思想:先要把检索的集合缩小,然后在小集合中检索f-d’位的海明距离

按照例子,80亿网页 有2^34 个,那么理论上34位就能表示完80亿不重复的指纹。我们假设最前的34位的表示完了80亿指纹,假设指纹在前30位是一样的,那么后面4位还可以表示2 4个, 只需要逐一比较这16个指纹是否于待测指纹汉明距离小于3。

假设:对任意34位中的30位都可以这么做。

因此在一次完整的查找中,限定前q位精确匹配(假设这些指纹已经是q位有序的,可以采用二分查找,如果指纹量非常大,且分布均匀,甚至可以采用内插搜索),之后的2 d-q个指纹剩下64-q位需要比较汉明距离小于3。

于是问题就转变为如何切割64位的q。

将64位平分成若干份,例如4份ABCD,每份16位。

假设这些指纹已经按A部分排序好了,我们先按A的16位精确匹配到一个区间,这个区间的后BCD位检查汉明距离是否小于3。

同样的假设,其次我们按B的16位精确匹配到另一个区间,这个区间的所有指纹需要在ACD位上比较汉明距离是否小于3。

同理还有C和D

所以这里我们需要将全部的指纹T复制4份, T1 T2 T3 T4, T1按A排序,T2按B排序… 4份可以并行进行查询,最后把结果合并。这样即使最坏的情况:3个位分别落在其中3个区域ABC,ACD,BCD,ABD…都不会被漏掉。

只精确匹配16位,还需要逐一比较的指纹量依然庞大,可能达到2 d-16个,我们也可以精确匹配更多的。

例如:将64位平分成4份ABCD,每份16位,在BCD的48位上,我们再分成4份,WXZY,每份12位, 汉明距离的3位可以散落在任意三块,那么A与WXZY任意一份合起来做精确的28位…剩下3份用来检查汉明距离。 同理B,C,D也可以这样,那么T需要复制16次,ABCD与WXYZ的组合做精确匹配,每次精确匹配后还需要逐一比较的个数降低到2 d-28个。不同的组合方式也就是时间和空间上的权衡。

最坏情况是其中3份可能有1位汉明距离差异为1。

算法的描述如下:

1)先复制原表T为Tt份:T1,T2,….Tt

2)每个Ti都关联一个pi和一个πi,其中pi是一个整数, πi是一个置换函数,负责把pi个bit位换到高位上。

3)应用置换函数πi到相应的Ti表上,然后对Ti进行排序

4)然后对每一个Ti和要匹配的指纹F、海明距离k做如下运算:

a) 然后使用F’的高pi位检索,找出Ti中高pi位相同的集合

b) 在检索出的集合中比较f-pi位,找出海明距离小于等于k的指纹

5)最后合并所有Ti中检索出的结果

由于文本已经压缩成8个字节了,因此其实Simhash近似查重精度并不高:

image

 

附参考文献:

[1] Detecting near-duplicates for web crawling.

[2] Similarity estimation techniques from rounding algorithms.

[3] http://en.wikipedia.org/wiki/Locality_sensitive_hashing

[4] http://www.coolsnap.net/kevin/?p=23

[5] http://www.cnblogs.com/linecong/archive/2010/08/28/simhash.html

[6] http://blog.csdn.net/lgnlgn/article/details/6008498

博主注:本文主要就是拼接了参考文献[5][6]而成。


   秀萌宝照片,酷赢“拉比盒子”   “警告:您的主城已被占领!!”   发现兴趣所在,玩转新浪Qing!

相关 [simhash 算法 原理] 推荐:

Simhash算法原理和网页查重应用

- - 互联网旁观者
传统的hash算法只负责将原始内容尽量均匀随机地映射为一个签名值,原理上相当于伪随机数产生算法. 产生的两个签名,如果相等,说明原始内容在一定概率下是相等的;如果不相等,除了说明原始内容不相等外,不再提供任何信息,因为即使原始内容只相差一个字节,所产生的签名也很可能差别极大. 从这个意义上来说,要设计一个hash算法,对相似的内容产生的签名也相近,是更为艰难的任务,因为它的签名值除了提供原始内容是否相等的信息外,还能额外提供不相等的原始内容的差异程度的信息.

[转][转] 文本相似性算法Simhash原理及实践

- - heiyeluren的blog(黑夜路人的开源世界)
simhash(局部敏感哈希)的原理. simhash广泛的用于搜索领域中,也许在面试时你会经常遇到这样的问题,如果对抓取的网页进行排重,如何对搜索结果进行排重等等. jaccard相似度也是一种相似 算法,它的计算方式比较直观,就是sim(x,y)= (x∩y) / (x∪y),例如:.      若  S={a, d}, T={a, c, d} .

Simhash的巧妙

- - 丕子
Simhash是locality sensitive hash(局部敏感哈希)的一种,最早由Moses Charikar在《similarity estimation techniques from rounding algorithms》一文中提出. Google就是基于此算法实现网页文件查重的《Detecting near-duplicates for web crawling》.

Bitmap算法原理

- - 互联网旁观者
【什么是 Bit-map 】. 所谓的Bit-map就是用一个bit位来标记某个元素对应的Value, 而Key即是该元素. 由于采用了Bit为单位来存储数据,因此在存储空间方面,可以大大节省. 如果说了这么多还没明白什么是Bit-map,那么我们来看一个具体的例子,假设我们要对0-7内的5个元素(4,7,2,5,3)排序(这里假设这些元素没有重复).

海量数据相似度计算之simhash短文本查找

- - ITeye博客
在前一篇文章 《 海量数据相似度计算之simhash和海明距离》 介绍了simhash的原理,大家应该感觉到了算法的魅力. 但是随着业务的增长 simhash的数据也会暴增,如果一天100w,10天就1000w了. 我们如果插入一条数据就要去比较1000w次的simhash,计算量还是蛮大,普通PC 比较1000w次海明距离需要 300ms ,和5000w数据比较需要1.8 s.

海量数据相似度计算之simhash和海明距离

- - CSDN博客架构设计推荐文章
通过  采集系统 我们采集了大量文本数据,但是文本中有很多重复数据影响我们对于结果的分析. 分析前我们需要对这些数据去除重复,如何选择和设计文本的去重算法. 常见的有余弦夹角算法、欧式距离、Jaccard相似度、最长公共子串、编辑距离等. 这些算法对于待比较的文本数据不多时还比较好用,如果我们的爬虫每天采集的数据以千万计算,我们如何对于这些海量千万级的数据进行高效的合并去重.

文本相似度计算-google的simHash汉明距离

- - 行业应用 - ITeye博客
       针对文本相似性计算,很多开发朋友首先想到的应该是使用向量空间模型VSM(Vector Space Model). 使用VSM计算相似度,先对文本进行分词,然后建立文本向量,把相似度的计算转换成某种特征向量距离的计算,比如余弦角、欧式距离、Jaccard相似系数等. 这种方法存在很大一个问题:需要对文本两两进行相似度比较,无法扩展到海量文本的处理.

RSA算法原理(二)

- - 阮一峰的网络日志
上一次,我介绍了一些 数论知识. 有了这些知识,我们就可以看懂 RSA算法. 这是目前地球上最重要的加密算法. 我们通过一个例子,来理解RSA算法. 假设 爱丽丝要与鲍勃进行加密通信,她该怎么生成公钥和私钥呢. 第一步,随机选择两个不相等的质数p和q. (实际应用中,这两个质数越大,就越难破解.

RSA算法原理(一)

- - 阮一峰的网络日志
如果你问我,哪一种 算法最重要. 我可能会回答 "公钥加密算法". 因为它是计算机通信安全的基石,保证了加密数据不会被破解. 你可以想象一下,信用卡交易被破解的后果. 进入正题之前,我先简单介绍一下,什么是"公钥加密算法". 1976年以前,所有的加密方法都是同一种模式:.   (1)甲方选择某一种加密规则,对信息进行加密;.

Reddit排名算法工作原理

- - 博客园_新闻
英文原文: How Reddit ranking algorithms work. 这是一篇继《 Hacker News 排名算法工作原理》之后的又一篇关于排名算法的文章. 这次我将跟大家探讨一下 Reddit 的文章排名算法和评论排名算法的工作原理. Reddit 使用的算法也是很简单,容易理解和实现.