海量数据相似度计算之simhash短文本查找
- - ITeye博客在前一篇文章 《 海量数据相似度计算之simhash和海明距离》 介绍了simhash的原理,大家应该感觉到了算法的魅力. 但是随着业务的增长 simhash的数据也会暴增,如果一天100w,10天就1000w了. 我们如果插入一条数据就要去比较1000w次的simhash,计算量还是蛮大,普通PC 比较1000w次海明距离需要 300ms ,和5000w数据比较需要1.8 s.
一、概述
针对文本相似性计算,很多开发朋友首先想到的应该是使用向量空间模型VSM(Vector Space Model)。使用VSM计算相似度,先对文本进行分词,然后建立文本向量,把相似度的计算转换成某种特征向量距离的计算,比如余弦角、欧式距离、Jaccard相似系数等。这种方法存在很大一个问题:需要对文本两两进行相似度比较,无法扩展到海量文本的处理。想想像Google这种全网搜索引擎,收录了上百亿的网页,爬虫每天爬取的网页数都是百万千万级别的。为了防止重复收录网页,爬虫需要对网页进行判重处理。如果采用VSM方法,计算量是相当可观的。
二、思想
输入为一个N维向量V,比如文本的特征向量,每个特征具有一定权重。输出是一个C位的二进制签名S。
1)初始化一个C维向量Q为0,C位的二进制签名S为0。
2)对向量V中的每一个特征,使用传统的Hash算法计算出一个C位的散列值H。对1<=i<=C,
如果H的第i位为1,则Q的第i个元素加上该特征的权重;
否则,Q的第i个元素减去该特征的权重。
3)如果Q的第i个元素大于0,则S的第i位为1;否则为0;
4)返回签名S。

三、java实现
import java.math.BigInteger;
import java.util.StringTokenizer;
public class SimHash {
private String tokens;
private BigInteger strSimHash;
private int hashbits = 128;
public SimHash(String tokens) {
this.tokens = tokens;
this.strSimHash = this.simHash();
}
public SimHash(String tokens, int hashbits) {
this.tokens = tokens;
this.hashbits = hashbits;
this.strSimHash = this.simHash();
}
public BigInteger simHash() {
int[] v = new int[this.hashbits];
StringTokenizer stringTokens = new StringTokenizer(this.tokens);
while (stringTokens.hasMoreTokens()) {
String temp = stringTokens.nextToken();
BigInteger t = this.hash(temp);
System.out.println("temp = " + temp+" : " + t);
for (int i = 0; i < this.hashbits; i++) {
BigInteger bitmask = new BigInteger("1").shiftLeft(i);
if (t.and(bitmask).signum() != 0) {
v[i] += 1;
} else {
v[i] -= 1;
}
}
}
BigInteger fingerprint = new BigInteger("0");
for (int i = 0; i < this.hashbits; i++) {
if (v[i] >= 0) {
fingerprint = fingerprint.add(new BigInteger("1").shiftLeft(i));
}
}
return fingerprint;
}
private BigInteger hash(String source) {
if (source == null || source.length() == 0) {
return new BigInteger("0");
} else {
char[] sourceArray = source.toCharArray();
BigInteger x = BigInteger.valueOf(((long) sourceArray[0]) << 7);
BigInteger m = new BigInteger("1000003");
BigInteger mask = new BigInteger("2").pow(this.hashbits).subtract(
new BigInteger("1"));
for (char item : sourceArray) {
BigInteger temp = BigInteger.valueOf((long) item);
x = x.multiply(m).xor(temp).and(mask);
}
x = x.xor(new BigInteger(String.valueOf(source.length())));
if (x.equals(new BigInteger("-1"))) {
x = new BigInteger("-2");
}
return x;
}
}
public int hammingDistance(SimHash other) {
BigInteger m = new BigInteger("1").shiftLeft(this.hashbits).subtract(
new BigInteger("1"));
BigInteger x = this.strSimHash.xor(other.strSimHash).and(m);
int tot = 0;
while (x.signum() != 0) {
tot += 1;
x = x.and(x.subtract(new BigInteger("1")));
}
return tot;
}
public static void main(String[] args) {
String s = "China people's Republic of China Chinese China people's Republic of China People's Republic of China";
SimHash hash1 = new SimHash(s, 128);
System.out.println(hash1.strSimHash + " "
+ hash1.strSimHash.bitLength());
s = "China people's Republic of China Chinese China people's Republic of China";
SimHash hash2 = new SimHash(s, 128);
System.out.println(hash2.strSimHash + " "
+ hash2.strSimHash.bitCount());
s = "China people's Republic";
SimHash hash3 = new SimHash(s, 128);
System.out.println(hash3.strSimHash + " "
+ hash3.strSimHash.bitCount());
System.out.println("============================");
System.out.println(hash1.hammingDistance(hash2));
System.out.println(hash1.hammingDistance(hash3));
}
}