代码执行的效率

标签: 杂项资源 编程语言 C++ Coding Compiler | 发表时间:2012-07-13 08:18 | 作者:陈皓
出处:http://coolshell.cn

在《 性能调优攻略》里,我说过,要调优性需要找到程序中的Hotspot,也就是被调用最多的地方,这种地方,只要你能优化一点点,你的性能就会有质的提高。在这里我给大家举三个关于代码执行效率的例子(它们都来自于网上)

第一个例子

PHP中Getter和Setter的效率来源reddit

这个例子比较简单,你可以跳过。

考虑下面的PHP代码:我们可看到,使用Getter/Setter的方式,性能要比直接读写成员变量要差一倍以上。

<?php
	//dog_naive.php

	class dog {
		public $name = "";
		public function setName($name) {
			$this-&gt;name = $name;
		}
		public function getName() {
			return $this-&gt;name;
		}
	}

	$rover = new dog();
        //通过Getter/Setter方式
	for ($x=0; $x<10; $x++) {
		$t = microtime(true);
		for ($i=0; $i<1000000; $i++) {
			$rover->setName("rover");
			$n = $rover->getName();
		}
		echo microtime(true) - $t;
		echo "\n";
	}
        //直接存取变量方式
        for ($x=0; $x<10; $x++) {
		$t = microtime(true);
		for($i=0; $i<1000000; $i++) {
			$rover->name = "rover";
			$n = $rover->name;
		}
		echo microtime(true) - $t;
		echo "\n";
	}
?>

这个并没有什么稀,因为有函数调用的开销,函数调用需要压栈出栈,需要传值,有时还要需要中断,要干的事太多了。所以,代码多了,效率自然就慢了。所有的语言都这个德行,这就是为什么C++要引入inline的原因。而且Java在打开优化的时候也可以优化之。但是对于动态语言来说,这个事就变得有点困难了。

你可能会以为使用下面的代码(Magic Function)会好一些,但实际其性能更差。

class dog {
	private $_name = "";
	function __set($property,$value) {
		if($property == 'name') $this->_name = $value;
	}
	function __get($property) {
		if($property == 'name') return $this->_name;
	}
}

动态语言的效率从来都是一个问题,如果你需要PHP有更好的性能,你可能需要使用 FaceBook的HipHop来把PHP编译成C语言。

第二个例子

为什么Python程序在函数内执行得更快?来源StackOverflow

考虑下面的代码,一个在函数体内,一个是全局的代码。

函数内的代码执行效率为 1.8s

def main():
    for i in xrange(10**8):
        pass
main()

函数体外的代码执行效率为 4.5s

for i in xrange(10**8):
    pass

不用太纠结时间,只是一个示例,我们可以看到效率查得很多。为什么会这样呢?我们使用  dis module 反汇编函数体内的bytecode 代码,使用  compile builtin 反汇编全局bytecode,我们可以看到下面的反汇编(注意我高亮的地方)

13 FOR_ITER                 6 (to 22)
16 STORE_FAST               1 (i)
19 JUMP_ABSOLUTE           13
13 FOR_ITER                 6 (to 22)
16 STORE_NAME               1 (i)
19 JUMP_ABSOLUTE           13

我们可以看到,差别就是  STORE_FAST 和  STORE_NAME,前者比后者快很多。所以,在全局代码中,变量i成了一个全局变量,而函数中的i是放在本地变量表中,所以在全局变量表中查找变量就慢很多。如果你在main函数中声明global i 那么效率也就下来了。原因是,本地变量是存在一个数组中(直到),用一个整型常量去访问,而全局变量存在一个dictionary中,查询很慢。

(注:在C/C++中,这个不是一个问题)

第三个例子

为什么排好序的数据在遍历时会更快?来源StackOverflow

参看如下C/C++的代码:

 for (unsigned i = 0; i < 100000; ++i) {
   // primary loop
    for (unsigned j = 0; j < arraySize; ++j) {
        if (data[j] >= 128)
            sum += data[j];
    }
}

如果你的data数组是排好序的,那么性能是1.93s,如果没有排序,性能为11.54秒。差5倍多。无论是C/C++/Java,或是别的什么语言都基本上一样。

这个问题的原因是——   branch prediction (分支预判)伟大的stackoverflow给了一个非常不错的解释。

考虑我们一个铁路分叉,当我们的列车来的时候, 扳道员知道分个分叉通往哪,但不知道这个列车要去哪儿,司机知道要去哪,但是不知道走哪条分叉。所以,我们需要让列车停下来,然后司机和扳道员沟通一下。这样的性能太差了。

所以,我们可以优化一下,那就是猜,我们至少有50%的概率猜对,如果猜对了,火车行驶性能巨高,猜错了,就得让火车退回来。如果我猜对的概率高,那么,我们的性能就会高,否则老是猜错了,性能就很差。

Image by Mecanismo, from Wikimedia Commons: http://commons.wikimedia.org/wiki/File:Entroncamento_do_Transpraia.JPG

我们的if-else 就像这个铁路分叉一样,下面红箭头所指的就是搬道器。

那么,我们的搬道器是怎么预判的呢?就是使用过去的历史数据,如果历史数据有90%以上的走左边,那么就走左边。所以,我们排好序的数据就更容易猜得对。

T = 走分支(条件表达式为true)
N = 不走分支(条件表达式为false)

data[] = 0, 1, 2, 3, 4, ... 126, 127, 128, 129, 130, ... 250, 251, 252, ...
branch = N  N  N  N  N  ...   N    N    T    T    T  ...   T    T    T  ...

= NNNNNNNNNNNN ... NNNNNNNTTTTTTTTT ... TTTTTTTTTT  (easy to predict)
data[] = 226, 185, 125, 158, 198, 144, 217, 79, 202, 118,  14, 150, 177, 182, 133, ...
branch =   T,   T,   N,   T,   T,   T,   T,  N,   T,   N,   N,   T,   T,   T,   N  ...

= TTNTTTTNTNNTTTN ...   (completely random - hard to predict)

从上面我们可以看到,排好序的数据更容易预测分支。

对此,那我们怎么办?我们需要在这种循环中除去if-else语句。比如:

我们把条件语句:

if (data[j] >= 128)
sum += data[j];

变成:

int t = (data[j] - 128) >> 31;
sum += ~t & data[j];

“没有分叉”的性能基本上和“排好序有分支”一个样,无论是C/C++,还是Java。

注:在GCC下,如果你使用  -O3 or  -ftree-vectorize 编译参数,GCC会帮你优化分叉语句为无分叉语句。VC++2010没有这个功能。

最后,推荐大家一个网站—— Google Speed,网站上的有一些教程告诉你 如何写出更快的Web程序

(全文完)

(转载本站文章请注明作者和出处 酷壳 – CoolShell.cn ,请勿用于任何商业用途)

————————============ 感谢 42qu.com 为本站提供 VPS ============————————
您可能也喜欢:

Why C++ ? 王者归来

PHP分页技术的代码和示例

28个Unix/Linux的命令行神器

优质代码的十诫

简单实用的Code Review工具
无觅

相关文章

相关 [代码] 推荐:

代码重构

- - ITeye博客
随着程序的演化,我们有必要重新思考早先的决策,并重写部分代码. 代码需要演化;它不是静态的事物. 重写、重做和重新架构代码合起来,称为重构.    当你遇到绊脚石  ---  代码不在合适,你注意到有两样东西其实应该合并或是其他任何对你来说是"错误"的东西  -------- . 如果代码具备以下特征,你都应该考虑重构代码:.

代码小比较

- Tim - 斯巴达第二季
判断上百万个4k的buffer是否为全0,我最先想到的办法是:zero_buffer = malloc(4096);. /* 循环百万次读取buffer */.         /* 全0 */. 由于好奇,看看shell工具cp的代码,它的解决办法是:. /* 循环百万次读取buffer */.         /* 全0 */.

两行 JavaScript 代码

- MessyCS - Dreamer&#39;s Blog
最近看到了两行 JavaScript 代码,很受启发. 在 JavaScript 中,我们可以获取HTML元素的属性值,例如 element.id. 但是,因为 for 和 class 是 JavaScript 中的关键字,所以在 JavaScript 中这两个属性名称分别用 htmlFor 和 className 代替,于是在封装的时候需要先对这两个属性进行特殊判断.

Netty代码分析

- LightingMan - 淘宝JAVA中间件团队博客
Netty提供异步的、事件驱动的网络应用程序框架和工具,用以快速开发高性能、高可靠性的网络服务器和客户端程序[官方定义],整体来看其包含了以下内容:1.提供了丰富的协议编解码支持,2.实现自有的buffer系统,减少复制所带来的消耗,3.整套channel的实现,4.基于事件的过程流转以及完整的网络事件响应与扩展,5.丰富的example.

python代码调试

- - 阿里古古
【转自: http://blog.csdn.net/luckeryin/article/details/4477233】. 本文讨论在没有方便的IDE工具可用的情况下,使用pdb调试python程序. 例如,有模拟税收计算的程序:. debug_demo函数计算4500的入账所需的税收. 在需要插入断点的地方,加入红色部分代码:如果_DEBUG值为True,则在该处开始调试(加入_DEBUG的原因是为了方便打开/关闭调试).

ios代码开源

- - CSDN博客移动开发推荐文章
本人从10年开始搞ios开发,从菜鸟到现在的入门,期间遇到了许多困难,也总结了一些东西,本着开源精神,希望大家共同成长的目的把这个工程开源出来.. 这个工程是从11年到13年之前完成的.主要是我平时用到的一些基础功能模块.其中有其他开源的代码和我自己写的一些.代码结构基本乱,12年以后的代码结构还可以,不是很乱,之前水平有限,如果不怎么样就别喷我了.

Oracle错误代码

- - 数据库 - ITeye博客
ORA-00001: 违反唯一约束条件 (.). ORA-00017: 请求会话以设置跟踪事件. ORA-00018: 超出最大会话数. ORA-00019: 超出最大会话许可数. ORA-00020: 超出最大进程数 (). ORA-00021: 会话附属于其它某些进程;无法转换会话. ORA-00022: 无效的会话 ID;访问被拒绝.

Java代码优化

- - ImportNew
2016年3月修改,结合自己的工作和平时学习的体验重新谈一下为什么要进行代码优化. 在修改之前,我的说法是这样的:. 就像鲸鱼吃虾米一样,也许吃一个两个虾米对于鲸鱼来说作用不大,但是吃的虾米多了,鲸鱼自然饱了. 代码优化一样,也许一个两个的优化,对于提升代码的运行效率意义不大,但是只要处处都能注意代码优化,总体来说对于提升代码的运行效率就很有用了.

用 pylint, 写好代码

- Nickcheng - 赖勇浩的编程私伙局
赖勇浩(http://laiyonghao.com). Pylint 是一个 Python 代码分析工具,它分析 Python 代码中的错误,查找不符合代码风格标准(Pylint 默认使用的代码风格是 PEP 8)和有潜在问题的代码. Pylint 是一个 Python 工具,除了平常代码分析工具的作用之外,它提供了更多的功能:如检查一行代码的长度,变量名是否符合命名标准,一个声明过的接口是否被真正实现等等.

完美的代码——Programmers(24)

- 山石 - FeedzShare
来自: 西乔的九卦 - FeedzShare  . 发布时间:2011年06月02日,  已有 2 人推荐. 慢工出细活,只要你要求快,需求分析之类的步骤都只能是过长而已. 载于《程序员》杂志2011年第4期. 这个系列的漫画讲述程序员——这种神秘人类的囧事,故事多来源于我身边的程序员朋友,且以互联网开发背景为主.