HBase的一些应用设计tip

标签: hbase 应用 设计 | 发表时间:2013-01-02 19:00 | 作者:changedi
出处:http://www.blogjava.net

1,对于HBase的存储设计,要考虑它的存储结构是:rowkey+columnFamily:columnQualifier+timestamp(version)+value = KeyValue in HBase,一个KeyValue依次按照rowkey,columnkey和timestamp有序。一个rowkey加一个column信息定位了hbase表的一个逻辑的行结构。

0XJJ{2%~G~[G]JBPMW}YE~A

2,从逻辑存储结构到实际的物理存储结构要经历一个fold过程,所有的columnFamily下的内容被有序的合并,因为HBase把一个ColumnFamily存储为一个StoreFile。

3,把HBase的查询等价为一个逐层过滤的行为,那么在设计存储时就应该明白,使设计越趋向单一的keyvalue性能会越好;如果是因为复杂的业务逻辑导致查询需要确定rowkey、column、timestamp,甚至更夸张的是用到了HBase的Filter在server端做value的处理,那么整个性能会非常低。

4,因此在表结构设计时,HBase里有tall narrow和flat wide两种设计模式,前者行多列少,整个表结构高且窄;后者行少列多,表结构平且宽;但是由于HBase只能在行的边界做split,因此如果选择flat wide的结构,那么在特殊行变的超级大(超过file或region的上限)时,那么这种行为会导致compaction,而这样做是要把row读内存的~~因此,强烈推荐使用tall narrow模式设计表结构,这样结构更趋近于keyvalue,性能更好。

5,一种优雅的行设计叫做partial row scan,我们一般rowkey会设计为<key1>-<key2>-<key3>...,每个key都是查询条件,中间用某种分隔符分开,对于只想查key1的所有这样的情况,在不使用filter的情况下(更高性能),我们可以为每个key设定一个起始和结束的值,比如key1作为开始,key1+1作为结束,这样scan的时候可以通过设定start row和stop row就能查到所有的key1的value,同理迭代,每个子key都可以这样被设计到rowkey中。

6,对于分页查询,推荐的设计方式也不是利用filter,而是在scan中通过offset和limit的设定来模拟类似RDBMS的分页。具体过程就是首先定位start row,接着跳过offset行,读取limit行,最后关闭scan,整个流程结束。

7,对于带有时间范围的查询,一种设计是把时间放到一个key的位置,这样设计有个弊端就是查询时一定要先知道查询哪个维度的时间范围值,而不能直接通过时间查询所有维度的值;另一种设计是把timestamp放到前面,同时利用hashcode或者MD5这样的形式将其打散,这样对于实时的时序数据,因为将其打散导致自动分到其他region可以提供更好的并发写优势。

8,对于读写的平衡,下面这张图更好的说明了key的设计:salting等价于hash,promoted等价于在key中加入其他维度,而random就是MD这样的形式了。

VN{YX`@[2P9AQ[@(2U8N9{0

9,还有一种高级的设计方式是利用column来当做RDBMS类似二级索引的应用设计,rowkey的存储达到一定程度后,利用column的有序,完成类似索引的设计,比如,一个CF叫做data存放数据本身,ColumnQualifier是一个MD5形式的index,而value是实际的数据;再建一个CF叫做index存储刚才的MD5,这个index的CF的ColumnQualifier是真正的索引字段(比如名字或者任意的表字段,这样可以允许多个),而value是这个索引字段的MD5。每次查询时就可以先在index里找到这个索引(查询条件不同,选择的索引字段不同),然后利用这个索引到data里找到数据,两次查询实现真正的复杂条件业务查询。

10,实现二级索引还有其他途径,比如:1,客户端控制,即一次读取将所有数据取回,在客户端做各种过滤操作,优点自然是控制力比较强,但是缺点在性能和一致性的保证上;2,Indexed-Transactional HBase,这是个开源项目,扩展了HBase,在客户端和服务端加入了扩展实现了事务和二级索引;3,Indexed-HBase;4,Coprocessor。

11,HBase集成搜索的方式有多种:1,客户端控制,同上;2,Lucene;3,HBasene,4,Coprocessor。

12,HBase集成事务的方式:1,ITHBase;2,ZooKeeper,通过分布式锁。

13,timestamp虽然叫这个名字,但是完全可以存放任何内容来形成用户自定义的版本信息。


本文链接

相关 [hbase 应用 设计] 推荐:

HBase的一些应用设计tip

- - BlogJava_首页
1,对于HBase的存储设计,要考虑它的存储结构是:rowkey+columnFamily:columnQualifier+timestamp(version)+value = KeyValue in HBase,一个KeyValue依次按照rowkey,columnkey和timestamp有序.

HBase表设计

- - 互联网 - ITeye博客
默认情况下,在创建HBase表的时候会自动创建一个region分区,当导入数据的时候,所有的HBase客户端都向这一个region写数据, 直到这 个region足够大了才进行切分. 一种可以加快批量写入速度的方法是通过预先创建一些空的regions,这样当数据写入HBase时,会按 照 region分区情况,在集群内做数据的负载均衡.

HBase Schema 设计

- - IT瘾-dev
HBase 与传统关系数据库(例如MySQL,PostgreSQL,Oracle等)在架构的设计以及为应用程序提供的功能方面有很大的不同. HBase 权衡了其中一些功能,以实现更好的可扩展性以及更灵活的模式. 与关系数据库相比,HBase 表的设计有很大的不同. 下面将通过解释数据模型向您介绍 HBase 表设计的基础知识,并通过一个例子深入探讨 HBase 表的设计.

HBase RowKey 设计

- - IT瘾-dev
1.1 RowKey对查询的影响. HBase中 RowKey 用来唯一标识一行记录. 在 HBase 中检索数据有以下三种方式:. 通过 get 方式,指定 RowKey 获取唯一一条记录. 通过 scan 方式,设置 startRow 和 endRow 参数进行范围匹配. 全表扫描,即直接扫描整张表中所有行记录.

HBASE高级应用

- - 数据库 - ITeye博客
基本原则是尽量把查询的维度或信息存入行健中,因为这样筛选数据的效率最高. 从表的形式看,主要有列少行多的高表和行多列少的宽表,一般情况下高表更有优势,因为hbase只能按行拆分. 防止数据过热:当时间序列类型的数据(行健为时间戳)写入时,数据集中在一个region中,很容易产生读写热点. 解决办法有:1)添加hash前缀,2)字段交换或提升权重:即在行键中添加另外一个字段或交换杭建中多个字段的位置,3)随机化,比如对整个行健取MD5,作为新的行健.

HBase Rowkey 设计指南

- -
为什么Rowkey这么重要. RowKey 到底是什么. 如果想及时了解Spark、Hadoop或者Hbase相关的文章,欢迎关注微信公共帐号: iteblog_hadoop. 我们常说看一张 HBase 表设计的好不好,就看它的 RowKey 设计的好不好. 可见 RowKey 在 HBase 中的地位.

hbase rowkey 设计(三维有序)

- - 经验沉淀 知识结晶
此文原创,转载请说明出处:http://ronxin999.blog.163.com/blog/static/4221792020130109202973/. 看这篇文章,你首先要了解hbase的基本存储模型,不懂的可以看我的文章,有做特别的说明. 今天难得有时间,写博文,特地总结下一直想写hbase的实践经验,在用hbase的过程中,我们都知道,rowkey设计的好坏,是我们能最大发挥hbase的架构优势,也是我们是否正确理解hbase的一个关键点.

Solr与HBase架构设计 - aitanjupt

- - 博客园_首页
摘要:本篇是本人在做一个大数据项目. ,对于系统架构总结的一点想法,如何在保证存储量的情况下,又能保证数据的检索速度. 前提:      Solr、SolrCloud提供了一整套的数据检索方案,HBase提供了完善的大数据存储机制. 需求:      1、对于添加到HBase中的结构化数据,能够检索出来.

HBase表设计原则整理

- - 互联网 - ITeye博客
因为每个列簇是存在一个独立的HFile里的,flush和compaction操作都是针对一个Region进行的,当一个列簇的数据很多需要flush的时候,其它列簇即使数据很少也需要flush,这样就产生的大量不必要的io操作. 在多列簇的情况下,注意各列簇数据的数量级要一致. 如果两个列簇的数量级相差太大,会使数量级少的列簇的数据扫描效率低下.

HBase 原理、设计与优化实践

- - leejun_2005的个人页面
HBase —— Hadoop Database的简称,Google BigTable的另一种开源实现方式,从问世之初,就为了解决用大量廉价的机器高速存取海量数据、实现数据分布式存储提供可靠的方案. 从功能上来讲,HBase不折不扣是一个数据库,与我们熟悉的Oracle、MySQL、MSSQL等一样,对外提供数据的存储和读取服务.