HBase表设计

标签: hbase 设计 | 发表时间:2013-11-11 22:54 | 作者:thd52java
出处:http://www.iteye.com

1. 表的设计

1.1 Pre-Creating Regions

默认情况下,在创建HBase表的时候会自动创建一个region分区,当导入数据的时候,所有的HBase客户端都向这一个region写数据, 直到这 个region足够大了才进行切分。一种可以加快批量写入速度的方法是通过预先创建一些空的regions,这样当数据写入HBase时,会按 照 region分区情况,在集群内做数据的负载均衡。

预分区的一个例子:

public static boolean createTable(HBaseAdmin admin, HTableDescriptor table, byte[][] splits) throws IOException { try {

    admin.createTable(table, splits); return true;

  } catch (TableExistsException e) {

    logger.info("table " + table.getNameAsString() + " already exists"); // the table already exists...  return false;  

  }

} public static byte[][] getHexSplits(String startKey, String endKey, int numRegions) { byte[][] splits = new byte[numRegions-1][];

  BigInteger lowestKey = new BigInteger(startKey, 16);

  BigInteger highestKey = new BigInteger(endKey, 16);

  BigInteger range = highestKey.subtract(lowestKey);

  BigInteger regionIncrement = range.divide(BigInteger.valueOf(numRegions));

  lowestKey = lowestKey.add(regionIncrement); for(int i=0; i < numRegions-1;i++) {

    BigInteger key = lowestKey.add(regionIncrement.multiply(BigInteger.valueOf(i))); byte[] b = String.format("%016x", key).getBytes();

    splits[i] = b;

  } return splits;

}

1.2 Row Key

HBase中row key用来检索表中的记录,支持以下三种方式:

· 通过单个row key访问:即按照某个row key键值进行get操作;

· 通过row key的range进行scan:即通过设置startRowKey和endRowKey,在这个范围内进行扫描;

· 全表扫描:即直接扫描整张表中所有行记录。

在HBase中,row key可以是任意字符串,最大长度64KB,实际应用中一般为10~100bytes,存为byte[]字节数组,一般设计成定长的。

row key是按照字典序存储,因此,设计row key时,要充分利用这个排序特点,将经常一起读取的数据存储到一块,将最近可能会被访问的数据放在一块。

举个例子:如果最近写入HBase表中的数据是最可能被访问的,可以考虑将时间戳作为row key的一部分,由于是字典序排序,所以可以使用Long.MAX_VALUE - timestamp作为row key,这样能保证新写入的数据在读取时可以被快速命中。

1.3 Column Family

不要在一张表里定义太多的column family。目前Hbase并 不能很好的处理超过2~3个column family的表。因为某个 column family在flush的时候,它邻近的column family也会因关联效应被触发flush,最终导致系统产生更多的I/O。感 兴趣的同学可以对自己的HBase集群进行实际测试,从得到的测试结果数 据验证一下。

1.4 In Memory

创建表的时候,可以通过HColumnDescriptor.setInMemory(true)将表放到RegionServer的缓存中,保证在读取的时候被cache命中。

1.5 Max Version

创建表的时候,可以通过HColumnDescriptor.setMaxVersions(int maxVersions)设置表中数据的最大版本,如果只需要保存最新版本的数据,那么可以设置setMaxVersions(1)。

1.6 Time To Live

创建表的时候,可以通过HColumnDescriptor.setTimeToLive(int timeToLive)设置表中数据的存储生命 期,过期数据将自动被删除,例如如果只需要存储最近两天的数据,那么可以设置 setTimeToLive(2 * 24 * 60 * 60)。

1.7 Compact & Split

在HBase中,数据在更新时首先写入WAL 日志(HLog)和内存(MemStore)中,MemStore中的数据是排序的,当 MemStore累计到一定阈值时,就会创建一个新的 MemStore,并且将老的MemStore添加到flush队列,由单独的线程flush到磁 盘上,成为一个StoreFile。于此同时, 系统会在zookeeper中记录一个redo point,表示这个时刻之前的变更已经持久化了 (minor compact)。

StoreFile是只读的,一旦创建后就不可以再修改。因此Hbase的更新其实是不断追加的操作。当一个Store中的StoreFile达到 一定的阈值后,就会进行一次合并(major compact),将对同一个key的修改合并到一起,形成一个大的StoreFile,当 StoreFile的大小达到一定阈值后,又会对 StoreFile进行分割(split),等分为两个StoreFile。

由于对表的更新是不断追加的,处理读请求时,需要访问Store中全部的StoreFile和MemStore,将它们按照row key进行合 并,由于StoreFile和MemStore都是经过排序的,并且StoreFile带有内存中索引,通常合并过程还是比较快的。

实际应用中,可以考虑必要时手动进行major compact,将同一个row key的修改进行合并形成一个大的StoreFile。同时,可以将StoreFile设置大些,减少split的发生。



已有 0 人发表留言,猛击->> 这里<<-参与讨论


ITeye推荐



相关 [hbase 设计] 推荐:

HBase表设计

- - 互联网 - ITeye博客
默认情况下,在创建HBase表的时候会自动创建一个region分区,当导入数据的时候,所有的HBase客户端都向这一个region写数据, 直到这 个region足够大了才进行切分. 一种可以加快批量写入速度的方法是通过预先创建一些空的regions,这样当数据写入HBase时,会按 照 region分区情况,在集群内做数据的负载均衡.

HBase Schema 设计

- - IT瘾-dev
HBase 与传统关系数据库(例如MySQL,PostgreSQL,Oracle等)在架构的设计以及为应用程序提供的功能方面有很大的不同. HBase 权衡了其中一些功能,以实现更好的可扩展性以及更灵活的模式. 与关系数据库相比,HBase 表的设计有很大的不同. 下面将通过解释数据模型向您介绍 HBase 表设计的基础知识,并通过一个例子深入探讨 HBase 表的设计.

HBase RowKey 设计

- - IT瘾-dev
1.1 RowKey对查询的影响. HBase中 RowKey 用来唯一标识一行记录. 在 HBase 中检索数据有以下三种方式:. 通过 get 方式,指定 RowKey 获取唯一一条记录. 通过 scan 方式,设置 startRow 和 endRow 参数进行范围匹配. 全表扫描,即直接扫描整张表中所有行记录.

HBase Rowkey 设计指南

- -
为什么Rowkey这么重要. RowKey 到底是什么. 如果想及时了解Spark、Hadoop或者Hbase相关的文章,欢迎关注微信公共帐号: iteblog_hadoop. 我们常说看一张 HBase 表设计的好不好,就看它的 RowKey 设计的好不好. 可见 RowKey 在 HBase 中的地位.

hbase rowkey 设计(三维有序)

- - 经验沉淀 知识结晶
此文原创,转载请说明出处:http://ronxin999.blog.163.com/blog/static/4221792020130109202973/. 看这篇文章,你首先要了解hbase的基本存储模型,不懂的可以看我的文章,有做特别的说明. 今天难得有时间,写博文,特地总结下一直想写hbase的实践经验,在用hbase的过程中,我们都知道,rowkey设计的好坏,是我们能最大发挥hbase的架构优势,也是我们是否正确理解hbase的一个关键点.

HBase的一些应用设计tip

- - BlogJava_首页
1,对于HBase的存储设计,要考虑它的存储结构是:rowkey+columnFamily:columnQualifier+timestamp(version)+value = KeyValue in HBase,一个KeyValue依次按照rowkey,columnkey和timestamp有序.

Solr与HBase架构设计 - aitanjupt

- - 博客园_首页
摘要:本篇是本人在做一个大数据项目. ,对于系统架构总结的一点想法,如何在保证存储量的情况下,又能保证数据的检索速度. 前提:      Solr、SolrCloud提供了一整套的数据检索方案,HBase提供了完善的大数据存储机制. 需求:      1、对于添加到HBase中的结构化数据,能够检索出来.

HBase表设计原则整理

- - 互联网 - ITeye博客
因为每个列簇是存在一个独立的HFile里的,flush和compaction操作都是针对一个Region进行的,当一个列簇的数据很多需要flush的时候,其它列簇即使数据很少也需要flush,这样就产生的大量不必要的io操作. 在多列簇的情况下,注意各列簇数据的数量级要一致. 如果两个列簇的数量级相差太大,会使数量级少的列簇的数据扫描效率低下.

HBase 原理、设计与优化实践

- - leejun_2005的个人页面
HBase —— Hadoop Database的简称,Google BigTable的另一种开源实现方式,从问世之初,就为了解决用大量廉价的机器高速存取海量数据、实现数据分布式存储提供可靠的方案. 从功能上来讲,HBase不折不扣是一个数据库,与我们熟悉的Oracle、MySQL、MSSQL等一样,对外提供数据的存储和读取服务.

HBase最佳实践-列族设计优化 – 有态度的HBase/Spark/BigData

- -
随着大数据的越来越普及,HBase也变得越来越流行. 会用HBase现在已经变的并不困难,然而,怎么把它用的更好却并不简单. 很简单,在保证系统稳定性、可用性的基础上能够用最少的系统资源(CPU,IO等)获得最好的性能(吞吐量,读写延迟)就是’用的好’. HBase是一个庞大的体系,涉及到很多方面,很多因素都会影响到系统性能和系统资源使用率,根据场景对这些配置进行优化会很大程度上提升系统的性能.