数据的力量
随着电商的发达,很多聪明人和资本开始重新进入零售这个古老的领域。但是零售的复杂性,远远超过很多人的想象——大到门店选址,小到货品码放位置,都要牵扯众多的数据和分析。
艾米特·考克斯为凯马特工作了27年,从推车、上货开始干,直到最后成为数据库市场营销和信息系统主管。他在数据分析方面颇有建树,先后在GE、沃尔玛等公司负责消费者分析的工作。《做零售就该这样分析》一书,对零售行业的不同侧重点——分析市场购物篮数据、吸引顾客冲动购买、运用数据分析直到决策、利用地理数据为门店选址、进行劳动力预测以及积分卡战略分析等等方面,提供了很多实用的分析工具和思路。
1.不少时候,当消费者进入商店时,他们会被问及一些关于此次购物的问题。当他们结束购物走出商店时,他们会再次被拦下参加调查。查看他们的购物小票就会发现,他们实际购买的商品和之前调查时说打算购买的商品往往不符。此类调查实行起来非常不容易,但得到的信息非常有效——消费者嘴里说的和真正打算做的未必一致。
2.数据的获取、存储和分析都要耗费不少资金,要先弄清楚自己想要从数据中得到什么,否则会陷入到无止境的数据追寻中。
3.跨渠道分析正在经历着大规模的扩张,其中包括将所有在线交易数据、线上消费者数据与店内交易、门店消费者数据相整合。这听起来简单,但做起来非常困难:你需要建立起客户关系管理机制,借此区别出每一位顾客身份。
4.在美国,我的团队成功构建了跨渠道、跨商品的市场营销结构,并在此基础上更进了一步,向原本几乎只在网上购物的顾客提供门店独有的促销优惠。这么做的意义在于,一旦顾客踏进商店大门,向他出手冲动型商品的概率就大了很多。在网上就很难激发顾客的冲动购买,哪怕线上顾客的确进行了冲动购买,我们也很难判断。
5.传统网站分析只关注点击流量,但现在许多公司已经开始把目光投向互联网客户管理(Internet Customer Management)。
6.利用市场购物篮数据分析商品的亲缘关系,能极大指导空间、货架的布局规划。我们可以找到一些合适的商品,以优惠价进行捆绑销售。虽然略微调低了商品的总价,但卖出的商品数量增加了,这能帮我们赚回可观的利润。
7.一些商品和购物篮中其他商品毫无关联(是冲动购买的),如果能让顾客更容易发现此类冲动型商品,销售量可以显著增长。最后我选定了3样商品放在收音机柜台上——一次性相机、4卷一组的透明胶带和12只装的AA电池。最终的统计显示,销售收益增加了数百万美元。
8.最佳商圈划分需要考虑人口密度、竞争对手店址、人口统计、住房、生活方式这些因素,还需要考虑自然屏障和交通模式(如道路网)。
9.英国乐购已经开始逐步停用天天平价的策略,表示这么做的最主要原因是顾客对天天平价不感冒。乐购已经积累下了大量消费者的数据,可以分析出他们最重要的客户群常购买哪些具有价格弹性的商品。这一分析结果是无价之宝。乐购可以据此来搭建定价体系,让顾客每天都能以低价购买他们最需要的商品,而无需降低商店里所有商品的价格。
10.我们淘汰了20%的商品,留出空间来排放销量最高的商品,并把亲缘关系密切的商品布局在一起,这一季度的销量有25%~30%的提升。
11.在美国,典型的百货商店占地5万~7万平方英尺,年销售额若要维持在2000万美元到4500万美元,就需要10万户家庭的人口基础。
12.我们帮助消费者估算如果他们继续在本店购物,未来每周、每月能省多少钱。这种做法的确改变了30%的顾客群的购物频率。
13.70%的利润是由30%的顾客带来的,你需要通过仔细的分析判断出这30%的顾客是谁,与此同等重要的是,找出那些只购买打折商品的顾客。