一个电商的“大数据”生存

标签: 猛料分享 公司 大数据 电子商务 | 发表时间:2013-10-15 09:17 | 作者:admin
出处:http://madbrief.com

一个电商的“大数据”生存

王欣磊发现,最近,网上超市“1号店”在线购物车的转化率下降了。身为1号店副总裁的他,试图找出其中的原因:缺货,也许是一个直接因素,但除了缺货,其他细节也可能导致购物车转化率的下降。他知道,这些看起来似乎并不起眼的细节,统统增加了问题解决的复杂性。

作为电商产品设计领域的资深人士,王欣磊向来喜欢用数据分析问题。但越来越丰富的数据,也给他带来了新困惑:当一个数字在下降,另一个数字在上升时,如何证明这两者间具有相关性?购物车转化率下降的问题,便是一个典型的案例。

在最近兴起的“大数据”研究中,王欣磊尝试为自己的疑问找到答案,但结果却并不令人满意。“《大数据时代》那本书中提到,人们不再需要探究数据间的因果关系,而只需要知道相关关系。但在实际操作中,我们怎样判断这种相关关系是一段时间内的偶然现象,还是必然的趋势?这是个很大的问题。”

但即便面对种种困惑,“大数据”,对1号店来说依然是一座金矿,并已经开始从中有所收获。比如,1号店已经在帮商家分析商品之间的关联度,并以之为依据制定营销策略。比如,1号店发现,当可口可乐和奥利奥饼干的关联度特别高时,就可以推荐商家做联合营销。

1号店称,其每天的流量(独立IP)已高达400多万,而每一个访客又会看近10个页面。用1号店董事长于刚的话说,除了用户买什么或不买什么,“用户的浏览路径,先看哪个页面,后看哪个,通过哪个链接切换,用搜索还是类目浏览等,1号店统统都能掌握”,“基于这些数据,能做的事情太多了”。

挖掘每个用户

准确地说,1号店的“数据挖掘”起步于3年多前。彼时,公司购买了数据仓库,并建立了自己的BI(商业智能)团队,试图通过建立顾客的行为模型,来提供更精准化的服务。

不过那时,1号店的关注点还仅仅停留在用户的购买记录和收藏行为上。相比之下,它目前对数据的捕捉,显然更加“精细化”。无论是购买频次,还是用户的性别、年龄、习惯等,都能帮助它分析和跟踪消费模式的微妙变化,进而“投其所好”地实现最大化的销售。

譬如,当一个用户浏览了商品后没有购买,1号店紧接着便会分析整个购物过程“卡”在哪个环节上。假如商品已经加入了购物车,那么导致用户没有购买的很可能是高运费,1号店很可能会调整运费;倘若用户没有购买是因为库存缺货,那么下次库存到货后公司就会提醒用户购买;如果用户浏览了许多类似的商品却最终没有购买,那么可以推测用户对这一品类的商品感兴趣,只是没有找到自己想要的品牌。这种情况下,只要有新品上架,1号店就会第一时间推荐用户购买。

还有一种可能是,商品的价格太高吓退了顾客,那么一旦有关于该商品的促销,1号店就会提醒顾客购买。假如顾客依然没有购买,1号店就假设用户并不想要这个商品,而是想要类似商品,于是只要有类似的新品推出,公司就会作出推荐。

在此基础上,公司观察到许多用户的购买频次有其规律性,假如一个用户上1号店只购买洗发水,且每三周购买一次,那么一旦用户哪一次没有购买,1号店就会想方设法地“提醒”他。

除了最终购买的商品外,用户的浏览路径同样受到了重视。在于刚看来,这些看似不经意的行为里蕴含了大量信息。“一个简单例子是,用户进入1号店页面后第一个浏览的商品,就是他的目标商品。假如用户首先浏览了牛奶,那么你就应该推荐他不同品牌的牛奶。”他说道。当然,这里头还有许多推荐的“技巧”——如果用户对某一品牌的牛奶比较忠诚,那么1号店就不应推荐其他品牌的牛奶,而应推荐与牛奶搭配的面包、饼干或早餐谷物等。

那些购买目的性很强的用户,常常会使用搜索的方式进入所需商品的页面。对于这一类用户,1号店同样也会“直截了当”地推荐他们的目标商品;另一些用户喜欢“逛”,他们往往通过类目来选择商品,“比如先买吃的,再买喝的,最后买用的”。对于这类客户,1号店倾向于同时向他展示很多商品,特别是新品,满足其猎奇、“闲逛”的心理;而对于那些被促销页面吸引的用户,公司则会向他们展示热推或促销的商品,以推动其购买。

在1号店上购物的顾客,可能并不知道,自己每一次的购物行为,正帮助这家电商公司逐步了解自己,并为自己描摹出一幅大概的生活图景。据王欣磊称,1号店首先会根据用户的购买金额和频次将其分为四个大群,在用户大群的基础上,公司根据用户的浏览习惯,为其打上更为细致的“标签”。这种描绘用户个人信息及购买偏好的标签,多达成百上千个,“比如,他是倾向于购买哪一类商品的?他的浏览行为是什么,是喜欢搜索还是用类目浏览?他喜欢在上班时间购物,还是在周末购物?购买的周期和收货的习惯又是什么?”王欣磊说道,在将客户抽象为一个个具体的标签后,1号店便能有的放矢地进行营销。

他同时坦言,1号店并没有办法直接获得用户的性别、家庭状况、收入状况等信息,但可以通过几种方式去推测。一个明显例子是,公司可以根据用户的姓名,并结合一些购买行为,来推测用户的性别。

从今年起,中科院的一个研究小组也加入了1号店的客户数据研究中。双方研究的重点便聚焦在顾客的分群。“他们会将顾客分为忠实顾客、风险顾客(较易流失的顾客)和需要提升的顾客,并对不同顾客的行为做进一步的分析。”王欣磊称。

“大数据”噪音

除了对消费行为的分析研究,如何借助数据让产品价格更具竞争力同样重要。眼下,1号店后台的PIS(价格智能系统)每天实时在线搜索60多个网站和1700多万种商品的库存信息和价格信息,并根据竞争对手的商品价格实时调整自己的商品价格。

具体说来,在公司设置的价格模型中,不同的品类都有相应的市场价格策略。“譬如,有些品类的价格要做到业界领先,有些品类只要不高于竞争对手就行了。有些是我的利润品类,有些是流量品类。”于刚称,“我们在价格模型中设置底价后,系统就会根据对手的动态价格自动调整商品的价格。你知道,1号店有几百万种商品,完全没有办法用手工设置价格。”

于刚称,在1号店较为擅长的食品饮料领域,公司试图做到价格领先,“尤其是进口牛奶品类,60%的线上销售都是通过1号店走的”;而在服装等领域,公司追求的则是毛利。

尽管这些做法看起来无懈可击,但随着1号店的数据量越积越多,它也开始面临新的烦恼:比如,应该怎样将海量的数据进行过滤,去芜存菁?王欣磊并不讳言,“数据的纯洁性是一个很大的问题。”

不难理解,当公司由于促销而使得销量大增时,消费者在那一特定阶段的行为与未来的趋势无关;此外,一些季节性、节假日的数据也要过滤,而那些因为竞争对手的促销导致销量突然下滑的数据也要剔除在外。

除了外部干扰,消费者的个人操作中也包含着不少无效行为,这同样被视为一种“数据噪音”。于刚发现,有的用户上1号店并不是为了购物,而纯粹是为了测试网站,“他注册之后,往往下一个订单后取消,再下一个订单再取消,这些用户肯定不在我们的研究范围”。

相比之下,更大的难题在于,线下批发商对线上数据的干扰。据王欣磊称,一些地区的线下批发商可能是因为线上渠道的价格更便宜,于是通过各种渠道拿到优惠券在线上购买,再将货品转移到线下去卖。“批发用户拥有很多的注册账号,这对我们很不利,也给数据带来很大的干扰。”他指出,“我们会通过技术的手段去防批发,并不断地清理数据。但如何去验证真正的消费者数据,目前依旧是个很大的挑战。”

收集数据的下一步,是对数据进行分析和解答。事实上,面对同一组数据,不同的人从不同的角度分析,会得出全然不同的结论。也有人认为,随着数据量的增大,研究的准确性一开始会随之上升,但很快就会趋平。眼下,业界亦并没有形成放之四海而皆准的解读方法。从这个角度看,如何正确地解读数据,让数据模型越来越准确,是摆在所有电商企业面前的难题。

在复杂的模型之上,算法同样重要。1号店需要在极短的时间内,通过算法解读用户的行为,并在得到结论后做出实时的推荐。用于刚的话说,“当一个顾客用搜索来挑选商品时,我们的后台需要为这一搜索做支持,算法得非常快才行——否则用户等待的时间一长,就会不耐烦。”

不难发现,1号店对大数据的研究和运用,仍处于摸索阶段,而在全球范围内,这依然是一个新鲜的应用。很多时候,于刚会对新的数据应用感到兴奋,但有时,他也会显得力不从心——在他眼里,学术界如今已做了很多关于大数据的前瞻性研究,企业界则尝试着大量的应用,但两者间的关联并不大,甚至朝着截然不同的方向前行。换言之,在学术研究与实际应用中,尚有很大的鸿沟。

“我们需要把这两者有机地结合起来,把研究的结果放到实践中去,我觉得,这是最难的一点,也是最需要花力气的。”于刚说。

本文来源:  21世纪经济报道

相关 [电商 大数据 生存] 推荐:

一个电商的“大数据”生存

- - MADBRIEF | 疯狂简报
王欣磊发现,最近,网上超市“1号店”在线购物车的转化率下降了. 身为1号店副总裁的他,试图找出其中的原因:缺货,也许是一个直接因素,但除了缺货,其他细节也可能导致购物车转化率的下降. 他知道,这些看起来似乎并不起眼的细节,统统增加了问题解决的复杂性. 作为电商产品设计领域的资深人士,王欣磊向来喜欢用数据分析问题.

基于用户画像大数据的电商防刷架构

- - 快课网
最近1~2年电商行业飞速发展,各种创业公司犹如雨后春笋大量涌现,商家通过各种活动形式的补贴来获取用户、培养用户的消费习惯. 但任何一件事情都具有两面性,高额的补贴、优惠同时了也催生了“羊毛党”. “羊毛党”的行为距离欺诈只有一步之遥,他们的存在严重破环了活动的目的,侵占了活动的资源,使得正常的用户享受不到活动的直接好处.

大数据服务提供商GEO发布双十二电商大战战果

- - DamnDigital
随着双十二大战落下帷幕,2013年的电商大战也迎来了最终盘点. 大数据广告服务提供商GEO综合了淘宝、京东、易迅、苏宁等在双十二的当天数据,发布了今年的电商大战的结果. 淘宝、京东、易迅不约而同地以发放现金红包、推出客户端专享优惠等方式,激励消费者下载并使用客户端,发力移动端购物,那么双十二当天,谁在移动端的表现最佳.

草根移动电商生存法则:精确瞄准低端用户

- - 有方网
很难想象,一群没有电脑的三四线城市的用户,却是最早通过手机上网购物的人群. 而专注于这个市场的买卖宝在2011年的销售额已达5亿元人民币,爱购网的去年总收入也在1.5亿元人民币. 过去几年,移动电子商务一直在草根用户的推动下迅速发展着. 买卖宝、爱购、掌购、移淘等并不为公众所知的新兴移动电商企业都在这块看似不起眼的WAP版移动电商市场上默默进行着深耕细作,买卖宝甚至在福布斯近期揭晓的中国移动互联网30强中位居第六.

谈大数据(2)

- - 人月神话的BLOG
对于大数据,后面会作为一个系列来谈,大数据涉及的方面特别多,包括主数据,数据中心和ODS,SOA,云计算,业务BI等很多方面的内容. 前面看到一个提法,即大数据会让我们更加关注业务方面的内容,而云平台则更多是技术层面的内容. 对于大数据会先把各个理解的关键点谈完了,再系统来看大数据的完整解决方案和体系化.

大数据之惑

- - 互联网分析
算起来,接触大数据、和互联网之外的客户谈大数据也有快2年了. 也该是时候整理下一些感受,和大家分享下我看到的国内大数据应用的一些困惑了. 云和大数据,应该是近几年IT炒的最热的两个话题了. 在我看来,这两者之间的不同就是: 云是做新的瓶,装旧的酒; 大数据是找合适的瓶,酿新的酒. 云说到底是一种基础架构的革命.

白话大数据

- - 互联网分析
这个时代,你在外面混,无论是技术还是产品还是运营还是商务,如果嘴里说不出“大数据”“云存储”“云计算”,真不好意思在同行面前抬头. 是千万级别的用户信息还是动辄XXXTB的数据量. 其实,大数据在我的眼里,不是一门技术,而是一种技能,从数据中去发现价值挖掘价值的技能. ”当我掷地有声用这句话开场时,正好一个妹子推门而入,听到这句话,微微一怔,低头坐下.

交通大数据

- - 人月神话的BLOG
本文简单谈下智慧交通场景下可能出现的大数据需求和具体应用价值. 对于公交线路规划和设计是一个大数据潜在的应用场景,传统的公交线路规划往往需要在前期投入大量的人力进行OD调查和数据收集. 特别是在公交卡普及后可以看到,对于OD流量数据完全可以从公交一卡通中采集到相关的交通流量和流向数据,包括同一张卡每天的行走路线和换乘次数等详细信息.

全球10大数据库

- - 译言-电脑/网络/数码科技
原文: Fiorenttini   译者: julie20098. [非商业性转载必须注明译者julie20098和相关链接. ,否则视为侵权,追究转载责任. 世界气候数据中心:气候全球数据中心, 220TB 的网络数据, 6PB 的其它数据. 国家能源研究科学计算中心,有 2.8PB 容量.

谈大数据分析

- - 人月神话的BLOG
对于数据分析层,我们可以看到,其核心重点是针对海量数据形成一个分布式可弹性伸缩的,高查询性能的,支持标准sql语法的一个ODS库. 我们看到对于Hive,impala,InfoBright更多的都是解决这个层面的问题,即解决数据采集问题,解决采集后数据行列混合存储和压缩的问题,然后形成一个支撑标准sql预防的数据分析库.