数据分析之如何看懂数据?

标签: 数据分析 数据 | 发表时间:2013-10-02 17:52 | 作者:漓江
出处:http://www.woshipm.com

对于数据,有一个共识就要会看数据,通过合理及透彻的分析来驱动产品,运营及市场策略的调整。但是这些知识看数据的中级阶段,高级阶段则是通过庞大的多维度的数据分析,能够预测到未来一个季度,半年甚至一年的业务走势,当然预测可以有一定的偏差在里面。还有的就是如果要进入到新业务的扩张上,那么能够计算出未来的一定周期内需要有多大的资金投入量,人员投入量,市场及运营资源投入等达到一个什么样的规模,或者说反推,我想达到这样的规模那么需要多少投入,多长时间。这个是最高阶段,在一般情况下也许根本不会触及到这个方面,少部分能够做到中级阶段基本上已经算是极限了。

互联网的有诸多领域,每个领域关注的点都不一样。我这边先从熟悉的社区和电子商务两个领域来说起。说到数据首先就是要去了解统计数据、分析数据的维度是有哪些。个人认为一般是有用户的维度,运营的维度,在社区来说还有内容的维度,在电子商务内部有运营的维度,我把推荐的单拎出来作为一个维度。

数据分析

一 用户的维度

从用户的维度来看网站数据,其实就是通常所说的网站分析层面。这个维度主要来看用户是通过什么渠道来到网站,在网站用户的行为是什么,主要的目地为市场人员提供推广效果依据,以及帮助产品人员来分析指南各个网站上哪些页面,哪些区域及模块最能够吸引用户并及时进行策略调整。

网站分析的 第一个数据点用户来源渠道,用户是从哪些渠道来到我们的网站上。是直接输入网站地址,是从收藏夹中打开收藏链接,还是在搜索引擎上搜索过来(那么前二十的搜索关键词都有哪些)。抑或是从微博、各个论坛等一些新媒体上点击我们网站链接进来的。如果网站现阶段也在做市场推广,最好的就是每一个放出去的链接都应该带有独立统计标识,这样能够清楚地看到不同的媒体上不同的广告位置的流量怎么样。这样市场人员可以通过这些数据来发现能够为网站带来稳定流程的渠道,同时剔除掉效果不好的渠道。上面说的前二十的搜索关键词也是做SEM确定关键词的一个重要来源。

第二个数据点是用户在网页上行为,就是用户通过各种不同的方式来到我们网站上后,常有的着陆页面是哪些,这些页面都有什么特点需要好好分析一下。重点关注用户在页面上的点击行为,一般用户会看几屏,点击哪些按钮或者链接的概率大,在各个页面上的停留时间是怎么样的。这些数据产品人员需要多关注,通过分析用户在各个网页上的行为,能为我们做产品决策提供很大的依据。

第三个点在用户访问路径上,主要是用户从进入着陆页上之后,陆续会到哪些页面上,最后在哪些页面上进行注册登录操作,在哪些页面上跳出。由这些数据可以清晰地勾勒出典型用户的访问路径图,在结合用户来源渠道一起来分析,就能找到那些渠道上的用户来到网站之后,访问深度最高,转化率从最高,这样市场人员也可以及时调整策略,对这些流量大,效果好的渠道加大推广力度。

第四个点是注册流程,一般来说很多网站的注册流程并不是很短,都需要至少两步,有的能到三四步,重点关注这个是因为注册流程繁琐,那么你的推广做到再好网站各个模块再易用,最后的转化率照样惨不忍睹。通过对这个流程的监测,可以看到有意愿注册的用户到底在哪些环节流失了,是不是填写信息太多,是不是发送确认信息失败等等。

最后总括起来就是,用户来源渠道,UV,PV,停留时间,网页点击热图,一跳率,二跳率,访问路径,转化率,市场推广还应该关注你的CPM,CPC,以及用户转化成本等。

二 运营的维度

运营的维度就是用户到了网站上后续行为,这个方面上社区和电子商务都有自己要去关注的点。

对于电子商务网站来说,用户的维度的分析是分析用户来源,运营的维度那就分析收入情况了。第一个数据点是每日的订单数,这个是要看电商网站整体的销售情况也是最重要的一个数据指标。第二个就是客单价了,每笔订单的金额,基本上订单数和客单价的乘积差不多就是电商网站的整体销量,与实际情况的差别不是很大。接下来就是要去看订单支付成功率,很多人都有这样的经历在电子商务网站上,我们可能会把很多商品放在了购物车上,但是最后肯那个会删掉购物车上某些商品,或者说很多订单最后并没有被支付。电商的运营人员非常关注这个数据,如果说大量的未支付订单,就需要去分析问题是出现哪里。是注册环节出了问题,还是说支付环节出问题导致用户支付失败。

第四个数据点在退货率,这个数据很重要,如果有大量的退货对于网站来说损失非常大,同时还要分析退货的原因是什么。

第五个就是订单交付周期,每个订单从用户支付成功到送达用户签收的时间,当然不同的区域,一线城市和二线城市的交付周期都有差别,但是这是考验了电商整体的物流水平。

还有一个 不为人注意的数据点就是投诉率,电子商务的用户体验是一个从线上到线下的全过程,重在服务某一个环节出现差错都是致命。用户投诉,往往就是在某个环节出现了问题,留给用户的印象非常之差。投诉率是电商整体服务水平的体验,建立一个品牌很难,但是毁掉一个品牌则是非常的容易。

对于电商来说, 最后一个重点数据则在用户的重复购买率或者二次购买率,这个则是考验了用户的忠诚度。某个用户第一次购买体验非常好,对商品很满意,那么产生二次购买行为的概率就非常大。用户多次购买的时间周期也是一个需要关注的数据点。

对于社区来说,需要关注的运营数据跟电商就有很多差别。以优质内容分享社区为例,每天的新注册用户数,登录的老用户数,人均PV数是社区整体数据。再下来,社区每天产生的内容有多少,具体到文字,图片,视频等各种不同类型的内容各是多少,上前日的增长率是多少,相对于上周或者上月的增长率又是多少。同时,么天新增关注,新增评论,转发等等,这几个数据,都是整个社区互动氛围的整体表现。当然还要考虑流失情况,两周未登录,一月未登录,两月未登录各占到社区总注册人数的比率,比率越高对于社区产品及运营人员来说是非常危险的,更要好好地去关注。

当然对于社区来说,优质活跃用户是营造社区氛围的关键。那么对于这些优质用户来说,是需要重点来关注的。通过数据来分析,达到优质标准的用户每周增长多少,每个人本周发布的内容,各个类型的内容以及互动的数量,有多少人是处于濒临流失状态。这些数据都会帮助运营人员调整自己的策略,例如看到很多用户很活跃,但是发布内容并不好,那么应该怎么去引导用户;还有用户濒临流失,那么就需要考虑用什么方法挽回这些用户。

三 商品及内容的维度

这个维度其实也应该放在运营的维度里面,但是这一块确实很多人都会忽略掉的,所以把这个维度也单拎出来。

在电商中,出了关注网站整体的用户及销售数据,还要关注单一品类及单一商品的数据。某一品类的销量,平均每次购买量,金额,以及退换货率。对于单一商品也是同样的数据分析,来看此商品在一定时期内的销量,订单数,金额,以及退换货率。通过这样的分析就能看到热门品类和热门商品的趋势,后续的运营,营销或者促销的选择就很清晰了。

对于社区来说也是如此,我们要看社区整体的数据情况,但是社区中内容的重要性与人的重要性同等重要。对于优质内容分享的社区来说显得尤为重要。除了内容的文字,图片,视频的不同类型,还有内容本身的分类。包括是摄影,旅行,美食,时尚,动漫,电影等不同标签的内容。在社区中内容的标签是用户自己添加的。那么需要关注的第一个数据点就是用户自己添加的标签有多少是本周内新增的。这样就可以看到社区每周会要多少新鲜的内容产生。第二就是各个标签下用户的发布内容量,每天是多少,每周是多少。最这样就看出哪些标签下的内容最活跃,后续相关的运营活动就可以从这里面找到方向。第三个数据点就是各个标签下用户的互动数,包括评论、转发、收藏抑或喜欢等不同行为操作的数量,这个数据很清晰地显示了用户在不同标签内容中的活跃程度,这是社区氛围运营及活跃必不可少的数据。

via:中国统计网


本文链接《 数据分析之如何看懂数据?
微信号:woshipm,产品干货天天推荐,欢迎订阅

相关 [数据分析 数据] 推荐:

Excel 数据分析

- - ITeye博客
用Excel做数据分析——直方图. 已有 0 人发表留言,猛击->> 这里<<-参与讨论. —软件人才免语言低担保 赴美带薪读研.

扯扯数据分析

- - 互联网分析
在别人的眼里数据分析既是很深奥的职业,也是被人挑战的职业,更是让你又恨又爱的职业. 其实这些都不重要的,重要的是对此行感兴趣,骨子里有量化一切的 意识. 很多人首先脑海中出现的是1、2、3……等等,为何有这样的印象. 其实是我们数据分析师为了更好的运用“统计学”所以要将许多 数据想尽办法来转化为1、2、3这样的数据形式,从而更深入、科学的分析data,不扯这个了,这个没什么意思,看图:.

数据分析那些事

- - 小蚊子乐园
今早突然有个想法,就是经常有网友会对数据分析方面有一些困惑,并且咨询我该怎么办. 并且经常是同样的问题,所以觉得有必要对一些经典共性的问题进行整理,与大家分享,这里并非标准答案,仅作参考. 欢迎提出自己对数据方面的疑问,将在此篇将持续更新,敬请关注. ----------------------------------------我不是完美的分割线--------------------------------------- .

谈大数据分析

- - 人月神话的BLOG
对于数据分析层,我们可以看到,其核心重点是针对海量数据形成一个分布式可弹性伸缩的,高查询性能的,支持标准sql语法的一个ODS库. 我们看到对于Hive,impala,InfoBright更多的都是解决这个层面的问题,即解决数据采集问题,解决采集后数据行列混合存储和压缩的问题,然后形成一个支撑标准sql预防的数据分析库.

数据分析之如何用数据?

- - 互联网分析沙龙
光知道怎么看数据,还是不成,你得熟悉这些数据拿到手上之后怎么去用它,怎么让数据显示出来它本身的威力来. 第一个部分,是看历史数据,发现规律. 以社区中的活动和电商中的促销为例,这些都是常见的活动,活动做得好的话有意想不到的效果. 在做这样的活动,最好是拿到前一个月或者两个月的历史数据. 对电商来说,从这里面要去分析各个品类的销售情况,那个品类销量最大,那个品类销量最小,每月或者每周的平均增长率和符合增长率是多少.

Twitter收购数据分析公司BackType

- zou guangxian - 36氪
Twitter刚刚宣布已经收购BackType,一家帮助公司和品牌衡量社交媒体影响力的数据分析公司. BackType在博客上宣布这一消息时称团队将集中精力为Twitter发布商合作伙伴开发工具. 总部位于旧金山的BackType是一家由YC孵化的创业公司,自2008年以来已获得130万美元投资. 作为交易的一部分,BackType将停止BackTweets(帮助内容发布商了解推讯是如何转化为网站流量和销售额)的新用户注册.

数据分析中遇到的“圆”

- simple - 所有文章 - UCD大社区
与十年前不同,当今令数据分析师迷茫的,可能不再是数据很少,而是数据很多;今天不是不知道玩好数据的重要性,而是不知道玩错数据的危害性,即所谓甜蜜的烦恼. 一个数据分析师,如果能体会到,当下数据存在的核心问题,并且能清楚解决办法,就可以精益求精了. 这次想跟大家讲的是一个由受、想、行、识四个部份所组成生生不息的圈(Feedback Loop),彼此互相推进.

数据分析师的基本素质

- AWard - 小蚊子乐园
摘自《谁说菜鸟不会数据分析》第一章.     Mr.林看到小白斗志昂扬的样子非常高兴:别光说不做啊,要成为一名优秀的数据分析师,并非一件容易的事. 虽然所学的专业与数据分析不相关,但你可以通过工作中的实践学习数据分析,需要付出大量的时间和精力,不经一番寒彻骨,怎得梅花扑鼻香.     下面,我给你介绍一名合格的数据分析师需要具备的五大基本能力和素质.

新读图时代:500px.com数据分析

- holic536 - 东西
500px是一个由世界各地的摄影爱好者组成的高品质图片社区. 网站旨在寻找最优秀的摄影人才,分享和发现精彩的照片,找到志同道合的朋友. 网站创建于2003年,2009年500px重新改版升级成为2.0版. 从2009年的1000用户发展到现如今的4.5万用户,也就是在社交网络兴起之后,网站发展更加迅猛.