大数据你不懂爱——数据分析的七件做不到之事

标签: 分析视角 技术前沿 营销观点 | 发表时间:2013-05-09 07:43 | 作者:admin
出处:http://www.datakong.cn

不久之前我曾与一位大型银行的首席执行官一同用餐。他正在考虑是否要退出意大利市场,因为经济形势不景气,而且未来很可能出现一场欧元危机。

这位CEO手下的经济学家描绘出一片惨淡的景象,并且计算出经济低迷对公司意味着什么。但是最终,他还是在自己价值观念的指引下做出了决定。

这家银行在意大利已经有了几十年的历史。他不希望意大利人觉得他的银行只能同甘不能共苦。他不希望银行的员工认为他们在时局艰难之际会弃甲而逃。他决定留在意大利,不管未来有什么危机都要坚持下去,即便付出短期代价也在所不惜。

做决策之时他并没有忘记那些数据,但最终他采用了另一种不同的思维方式。当然,他是正确的。商业建立在信任之上。信任是一种披着情感外衣的互惠主义。在困境中做出正确决策的人和机构能够赢得自尊和他人的尊敬,这种感情上的东西是非常宝贵的,即便它不能为数据所捕捉和反映。

这个故事反映出了数据分析的长处和局限。目前这一历史时期最大的创新就在于,我们的生活现在由收集数据的计算机调控着。在这个时代,头脑无法理解的复杂情况,数据可以帮我们解读其中的含义。数据可以弥补我们对直觉的过分自信,数据可以减轻欲望对知觉的扭曲程度。

但有,些事情是“大数据”不擅长的,下面我会一一道来:

数据不懂社交。大脑在数学方面很差劲(不信请迅速心算一下437的平方根是多少),但是大脑懂得社会认知。人们擅长反射彼此的情绪状态,擅长侦测出不合作的行为,擅长用情绪为事物赋予价值。

计算机数据分析擅长的是测量社会交往的“量”而非“质”。网络科学家可以测量出你在76%的时间里与6名同事的社交互动情况,但是他们不可能捕捉到 你心底对于那些一年才见2次的儿时玩伴的感情,更不必说但丁对于仅有两面之缘的贝阿特丽斯的感情了。因此,在社交关系的决策中,不要愚蠢到放弃头脑中那台 充满魔力的机器,而去相信你办工作上的那台机器。

数据不懂背景。人类的决策不是离散的事件,而是镶嵌在时间序列和背景之中的。经过数百万年的演化,人脑已经变得善于处理这样的现实。人们擅长讲述交 织了多重原因和多重背景的故事。数据分析则不懂得如何叙事,也不懂得思维的浮现过程。即便是一部普普通通的小说,数据分析也无法解释其中的思路。

数据会制造出更大的“干草垛”。这一观点是由纳西姆•塔勒布(Nassim Taleb,著名商业思想家,著有《黑天鹅:如何应对不可知的未来》等书作)提出的。随着我们掌握的数据越来越多,可以发现的统计上显著的相关关系也就越 来越多。这些相关关系中,有很多都是没有实际意义的,在真正解决问题时很可能将人引入歧途。这种欺骗性会随着数据的增多而指数级地增长。在这个庞大的“干 草垛”里,我们要找的那根针被越埋越深。大数据时代的特征之一就是,“重大”发现的数量被数据扩张带来的噪音所淹没。

大数据无法解决大问题。如果你只想分析哪些邮件可以带来最多的竞选资金赞助,你可以做一个随机控制实验。但假设目标是刺激衰退期的经济形势,你就不 可能找到一个平行世界中的社会来当对照组。最佳的经济刺激手段到底是什么?人们对此争论不休,尽管数据像海浪一般涌来,就我所知,这场辩论中尚未有哪位主 要“辩手”因为参考了数据分析而改变立场的。

数据偏爱潮流,忽视杰作。当大量个体对某种文化产品迅速产生兴趣时,数据分析可以敏锐地侦测到这种趋势。但是,一些重要的(也是有收益的)产品在一开始就被数据摈弃了,仅仅因为它们的特异之处不为人所熟知。

数据掩盖了价值观念。我最近读到一本有着精彩标题的学术专著——《‘原始数据’只是一种修辞》。书中的要点之一就是,数据从来都不可能是“原始” 的,数据总是依照某人的倾向和价值观念而被构建出来的。数据分析的结果看似客观公正,但其实价值选择贯穿了从构建到解读的全过程。

这篇文章并不是要批评大数据不是一种伟大的工具。只是,和任何一种工具一样,大数据有拿手强项,也有不擅长的领域。正如耶鲁大学的爱德华•图弗特教授(Edward Tufte)所说:“这个世界的有趣之处,远胜任何一门学科。”

来自:果壳网

大数据你不懂爱——数据分析的七件做不到之事,首发于 互联网分析

相关 [大数据 数据分析] 推荐:

谈大数据分析

- - 人月神话的BLOG
对于数据分析层,我们可以看到,其核心重点是针对海量数据形成一个分布式可弹性伸缩的,高查询性能的,支持标准sql语法的一个ODS库. 我们看到对于Hive,impala,InfoBright更多的都是解决这个层面的问题,即解决数据采集问题,解决采集后数据行列混合存储和压缩的问题,然后形成一个支撑标准sql预防的数据分析库.

大数据分析的5个方面

- - ITeye资讯频道
越来越多的应用涉及到大数据,不幸的是所有大数据的属性,包括数量、速度、多样性等等都是描述了数据库不断增长的复杂性. 那么大数据给我们带来了什么好处呢. 大数据最大的好处在于能够让我们从这些数据中分析出很多智能的、深入的、有价值的信息. 下面我总结了分析大数据的5个方面. Analytic Visualizations(可视化分析).

大数据分析最佳实践

- - 互联网分析
   转自:TTNN   Q先生杰作. 大概是从今年开始,big data一词逐渐成为术语,这跟整个世界的数据爆发当然有关系. 以前,人们喜欢用海量数据这个词,large-scale. 这看上去还是显得有点学术气, 像是BI人自己关起门来说自己的宝贝. 而big data更显通俗,在各行各业都显现出的一种势头,于是产生这个更加简单的词汇,大数据.

大数据分析的分类-转载

- - 人月神话的BLOG
原文:http://www.csdn.net/article/2011-08-15/303101. Hadoop平台对业务的针对性较强,为了让你明确它是否符合你的业务,现粗略地从几个角度将大数据分析的业务需求分类,针对不同的具体需求,应采用不同的数据分析架构. 按照数据分析的实时性,分为实时数据分析和离线数据分析两种.

下一代大数据分析技术

- - Parallel Labs
原文发表于《程序员》杂志2013年第2期.. 随着以Hadoop为代表的大数据分析技术的普及,大数据的商业价值得到深入挖掘,并开始在互联网、零售、医疗、物联网等多个行业里成为商业变革的主导力量. Facebook最近就发布了名为Graph Search的新型社交搜索产品,基于海量的社交关系网络及“Likes”行为数据,为用户提供个性化的社交搜索服务,该产品被认为将是Google搜索业务的重要竞争对手.

基于mdrill的大数据分析

- - CSDN博客云计算推荐文章
     数据越来越多,传统的关系型数据库支撑不了,分布式数据仓库又非常贵. 几十亿、几百亿、甚至几千亿的数据量,如何才能高效的分析. mdrill是由阿里妈妈开源的一套数据的软件,针对TB级数据量,能够仅用10台机器,达到秒级响应,数据能实时导入,可以对任意的维度进行组合与过滤.     mdrill作为数据在线分析处理软件,可以在几秒到几十秒的时间,分析百亿级别的任意组合维度的数据.

大数据分析查询引擎Impala

- - 标点符
Impala是Cloudera公司主导开发的新型查询系统,它提供SQL语义,能查询存储在Hadoop的HDFS和HBase中的PB级大数据. 已有的Hive系统虽然也提供了SQL语义,但由于Hive底层执行使用的是MapReduce引擎,仍然是一个批处理过程,难以满足查询的交互性. 相比之下,Impala的最大特点也是最大卖点就是它的快速.

大数据下的数据分析平台架构

- vento - 《程序员》杂志官网
随着互联网、移动互联网和物联网的发展,谁也无法否认,我们已经切实地迎来了一个海量数据的时代,数据调查公司IDC预计2011年的数据总量将达到1.8万亿GB,对这些海量数据的分析已经成为一个非常重要且紧迫的需求. 作为一家互联网数据分析公司,我们在海量数据的分析领域那真是被“逼上梁山”. 多年来在严苛的业务需求和数据压力下,我们几乎尝试了所有可能的大数据分析方法,最终落地于Hadoop平台之上.