如何使你手里的数据变成现金?

标签: 业界动态 数据 大数据 | 发表时间:2013-10-04 22:21 | 作者:有关部门PM
出处:http://www.woshipm.com

数据变现

最近数据挖掘与分析讨论比较热的话题是“数据变现”,也就是所谓的数据挖掘在业务中进行了应用,并确实给业务带来更大的业务绩效收益。很多朋友都知道,有技术、熟悉业务是前提,但有了前提,也常常困惑于各种迷惑,数据到底被业务用了么,业务用了效果不好的话,问题出在哪里?

本文打算通过一些经验之谈,阐述“数据变现”基本准则(个人推荐),希望抛砖引玉,能引起更多人思考、讨论。

数据变现前提准备

数据变现首先得有清洗、整理、及时、准确的数据,以及科学的数据分析方法和手段;然后得有业务的熟悉程度,包括业务流程、业务运作方法和运营难点、业务解决方案等等。有了前提,再说如何把数据变现为价值。

数据的准备、分析方法自不用多说,大家已经讨论N多遍了。这里主要讨论对业务的熟悉程度,我们常常提到的业务熟悉,往往只是停留在业务流程、业务数据流的熟悉。例如订单流程,数据流到某个状态才转ERP让物流拣货。直到现在,很多数据分析人还是认为这样的就叫熟悉业务了。

我曾经做过的大促分析,经过当天每小时流量、订单、库存,结合商品分布、用户分布,准确诊断大促不足的地方、大促高价值的地方,然后再一次促销中,将数据洞察转换为行动方案。这是因为我熟知业务部门要行动,他们需要了解到底哪些地方要如何改进,改进多少?例如商品部门,你说准备库存结构不合理,那你告诉我到底各SKU准备多少,为什么这样准备?客户部门,你说老客户活跃度激活不够,你告诉我如何做的更好,凭什么说这样才能更好?这些大家觉得仅仅熟悉流程,能给答案推动数据变现么?

充分地洞察和分析

数据要能说话,前提它要能成为说话的“证据”,例如销售增速同比下滑50%,你凭什么说是老客户维护是主要问题,而不是网站产品或者价格问题?

我个人以为这是一个数据分析、洞察融入业务逻辑的推理过程,写出来的分析报告逻辑严密,才能让业务部门信服、使用数据结论和建议。
上一个博文提到的:假设订单转换率由3%下降到1.5%,那么从业务角度,会有哪些可能性?

  • 1、导流出了问题,新的流量来源僵尸用户多?(用户访问习惯性行为判断)
  • 2、推广出了问题,很多用户误点广告(由退出率判断)?
  • 3、网站是否改版,降低了客户体验?(用户行为路径判断)?
  • 4、网站其他问题,例如某些功能比较难用,网站变慢等(用户行为访问节点分析判断)?
  • 5、是否商品突然没有了吸引力,例如商品之前还是大量5-6折的商品引流,现在变成8折为引流了?(通过商品访问深度、商品访问比较分析)

我们每一种可能,都要有“对应”的数据来说明,让业务部门关注或者不关注这个因素,而不是看来数据就算了。你说通过某广告来源来的流量,马上就退出的情况,这不是点错广告,是什么呢?这就是逻辑推理!

和业务充分沟通

这点很重要,也有挑战性,不同公司的企业文化,决定了你沟通的技巧需要有对应,所以你在某企业有沉淀,有人脉了,才更容易沟通,更容易交心。

根据原则,就是首先你的数据分析是来帮助他们的,而不是让他们帮你做数据试验;其次你的业务逻辑非常清晰,让业务觉得和你交流有共同语言,值得交流;最后你确实有成功案例,让业务有动力与你倾力合作。

推动数据驱动执行

交心的沟通后,业务部门甚至可能让你参与业务会议、请你帮忙提业务运作建议。但如果你还没与业务部门达成如此默契,就需要主动看执行结果,如果不够理想,请主动思考什么原因,与业务部门咨询是否有什么困难,缺乏什么条件。

总结

数据驱动失败,可能业务用户执行不到位,但也可能是数据分析漏了什么业务因素,或者数据挖掘算法不够合理,所以BI部门需要多审视自己,而且即便是业务执行不到位所致,请多关注对方是否有不得已的原因,而不是埋怨业务部门不给力,在未来合作中,数据才能更主动发挥价值。

作者:去哪儿网机票事业部 数据营销 高级经理 innovate511 


本文链接《 如何使你手里的数据变成现金?
微信号:woshipm,产品干货天天推荐,欢迎订阅

相关 [数据 现金] 推荐:

如何使你手里的数据变成现金?

- - 人人都是产品经理
最近数据挖掘与分析讨论比较热的话题是“数据变现”,也就是所谓的数据挖掘在业务中进行了应用,并确实给业务带来更大的业务绩效收益. 很多朋友都知道,有技术、熟悉业务是前提,但有了前提,也常常困惑于各种迷惑,数据到底被业务用了么,业务用了效果不好的话,问题出在哪里. 本文打算通过一些经验之谈,阐述“数据变现”基本准则(个人推荐),希望抛砖引玉,能引起更多人思考、讨论.

658 亿现金的投注

- 北岛 - 爱范儿 · Beats of Bits
据 Asymco 的消息,截至第二财季,苹果(Apple)手上的现金已经达到了 658 亿美元. 如何理解这些巨额的现金,Asymco 给出了七个答案:. 这些巨额现金足以使苹果公司的首席财务官跻身全球百大基金经理之列,将超过任何一位对冲基金经理所掌控的现金数额. 苹果仅仅一个季度的现金增量就超过了许多公司的市值的增长水平.

数据仓库

- Ran - Linux@SOHU
翻译:马少兵、曾怀东、朱翊然、林业. 尽管服务器存储、处理能力得到有效的提高,以及服务器价格的降低,让人们能够负担起大量的服务器,但是商业软件应用和监控工具快速的增加,还是使得人们被大量的数据所困扰. 在数据仓库领域中的许多系统管理员、应用开发者,以及初级数据库管理员发现,他们正在处理“海量数据”-不管你准备与否-都会有好多不熟悉的术语,概念或工具.

数据抽取

- - 数据库 - ITeye博客
转自: http://wiki.mbalib.com/wiki/%E6%95%B0%E6%8D%AE%E6%8A%BD%E5%8F%96#.   数据抽取是指从源数据源系统抽取目的数据源系统需要的. 实际应用中,数据源较多采用的是. 数据迁移或数据复制,它将数据源中的表或视图的数据原封不动的从数 据库中抽取出来,并转换成自己的ETL 工具可以识别的格式.

数据库sharding

- - 数据库 - ITeye博客
当团队决定自行实现sharding的时候,DAO层可能是嵌入sharding逻辑的首选位置,因为在这个层面上,每一个DAO的方法都明确地知道需要访问的数据表以及查询参数,借助这些信息可以直接定位到目标shard上,而不必像框架那样需要对SQL进行解析然后再依据配置的规则进行路由. 另一个优势是不会受ORM框架的制约.

数据脱敏

- - IT瘾-bigdata
作者|李呈祥,其中部分内容由十一城补充. 数据脱敏(Data Masking),又称数据漂白、数据去隐私化或数据变形. 百度百科对数据脱敏的定义为:指对某些敏感信息通过脱敏规则进行数据的变形,实现敏感隐私数据 的可靠保护. 这样,就可以在开发、测试和其它非生产环境以及外包环境中安全地使用脱敏后的真实数据集.

现金储备:苹果的杀手锏

- So - 译言-每日精品译文推荐
来源How Apple Uses its Cash Hoard to its Advantage. 译者Robin_Witheme. 苹果公司巨大的现金储备是它推出最先进的产品,从而保持领先竞争对手的一种战略. 在过去几年中,苹果公司储备了大量现金,也因此使得投资者经常质疑它为什么要保留这么多闲钱.

吃掉你现金的12个角落

- athur - 第一财经周刊官方博客
钱就是在指缝间一点点流走的,尝试着看好它们吧.   时代不同了,如果谁现在还停留在一切都是一手交钱一手交货的程度,他就会被看成一个怪人. 很多情况下,“交钱”手段多样化带来的一个必然结果就是,公司人往往把手中的钱,用各种各样的载体—比如借记卡、信用卡、会员卡、公积金、贷款—分散地放置.   打个比方吧,假设你有100元钱,你希望购买一瓶28.6元的洗面奶、一张48.8元的手机充值卡和一本13.2元消遣小说.

中移动现金储备超苹果

- 小熊TONY - cnBeta.COM
据国外媒体报道,目前中国移动(China Mobile Ltd.)的现金储备已经超越苹果,但该公司却错失了在近两年利用电信产业整体市值降至谷底的机遇进行外部收购的大好时机,同时也激发了投资者对该公司外部收购策略的不满情绪.

数据分析之如何用数据?

- - 互联网分析沙龙
光知道怎么看数据,还是不成,你得熟悉这些数据拿到手上之后怎么去用它,怎么让数据显示出来它本身的威力来. 第一个部分,是看历史数据,发现规律. 以社区中的活动和电商中的促销为例,这些都是常见的活动,活动做得好的话有意想不到的效果. 在做这样的活动,最好是拿到前一个月或者两个月的历史数据. 对电商来说,从这里面要去分析各个品类的销售情况,那个品类销量最大,那个品类销量最小,每月或者每周的平均增长率和符合增长率是多少.