Hadoop 归档 和HIVE 如何使用har 归档 文件

标签: hadoop hive har | 发表时间:2014-01-18 02:27 | 作者:zhouleilei
出处:http://blog.csdn.net
Hadoop archive 唯一的优势可能就是将众多的小文件打包成一个har 文件了,那这个文件就会按照dfs.block.size 的大小进行分块,因为hdfs为每个块的元数据大小大约为150个字节,如果众多小文件的存在(什么是小文件内,就是小于dfs.block.size 大小的文件,这样每个文件就是一个block)占用大量的namenode 堆内存空间,打成har 文件可以大大降低namenode 守护节点的内存压力。但对于MapReduce 来说起不到任何作用,因为har文件就相当一个目录,仍然不能讲小文件合并到一个split中去,一个小文件一个split ,任然是低效的,这里要说一点<<hadoop 权威指南 中文版>>对这个翻译有问题,上面说可以分配到一个split中去,但是低效的。
     既然有优势自然也有劣势,这里不说它的不足之处,仅介绍如果使用har 并在hadoop中更好的使用har 文件

首先 看下面的命令
     hadoop archive -archiveName 20131101.har /user/hadoop/login/201301/01 /user/hadoop/login/201301/01
     我用上面的命令就可以将 /user/hadoop/login/201301/01 目录下的文件打包成一个 20131101.har 的归档文件,但是系统不会自动删除源文件,需要手动删除
     hadoop fs -rmr /user/hadoop/login/201301/01/*.*.* 我是用正则表达式来删除的,大家根据自己的需求删除原始文件

 有人说了,我删了,归档文件存在,源文件不在了,如果要恢复怎么办,这个也困惑了我,hadoop 好像确实也没有提供这样的API 可以 还原成源文件
 功夫不负有心人,其实也很简单,直接从har 文件中 cp出来就可以了。
     hadoop fs -cp /user/hadoop/login/201301/01/20130101.har/*  /user/hadoop/login/201301/01/

那如何在hive 中使用呢,首先看建表 :
 CREATE EXTERNAL TABLE login_har(
  ldate string,
  ltime string,
  userid int,
  name string)
ROW FORMAT DELIMITED
  FIELDS TERMINATED BY ' '
STORED AS INPUTFORMAT
  'org.apache.hadoop.mapred.TextInputFormat'
OUTPUTFORMAT
  'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'
LOCATION
  'hdfs://h60:9000/user/hadoop/login/201301/01'
这是正常的文件 建外表 从而可以不损害源文件的情况下 在Hive中查看,外边有啥优点不多说。
如果是har 文件呢?
 CREATE EXTERNAL TABLE login_har(
  ldate string,
  ltime string,
  userid int,
  name string)
ROW FORMAT DELIMITED
  FIELDS TERMINATED BY ' '
STORED AS INPUTFORMAT
  'org.apache.hadoop.mapred.TextInputFormat'
OUTPUTFORMAT
  'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'
LOCATION
  'har://h60:9000/user/hadoop/login/201301/01/20130101.har'

这样就可以实现,但这样不好,为什么不好呢,我只能制定单一的目录,加入我的数据增加了,如何能动态的修改呢?
其实也简单:
 CREATE EXTERNAL TABLE login_har(
  ldate string,
  ltime string,
  userid int,
  name string)
PARTITIONED BY (
  ym string,
  d string)
ROW FORMAT DELIMITED
  FIELDS TERMINATED BY ' '
STORED AS INPUTFORMAT
  'org.apache.hadoop.mapred.TextInputFormat'
OUTPUTFORMAT
  'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'
LOCATION
  'hdfs://h60:9000/user/hadoop/login'

先对其父目录建表,然后对年月日进行分区PARTITIONED BY 即是进行分区
再手动修改 其动态分区 即可:
     alter table login_har add partition(ym='201301',d='01') LOCATION 'har:///flume/loginlog/201301/01/20130101.har';

这样不是很好,既可以对hive 表进行分区索引,也可以动态增加har 文件 到新的分区中。har包不能一旦建成不能修改,我们可以打小包,建目录的方式进行分而治之,既满足需求也不影响效率。






作者:zhouleilei 发表于2014-1-17 18:27:15 原文链接
阅读:99 评论:0 查看评论

相关 [hadoop hive har] 推荐:

Hadoop 归档 和HIVE 如何使用har 归档 文件

- - CSDN博客云计算推荐文章
但对于MapReduce 来说起不到任何作用,因为har文件就相当一个目录,仍然不能讲小文件合并到一个split中去,一个小文件一个split ,任然是低效的,这里要说一点<>对这个翻译有问题,上面说可以分配到一个split中去,但是低效的.      既然有优势自然也有劣势,这里不说它的不足之处,仅介绍如果使用har 并在hadoop中更好的使用har 文件.

Hadoop Hive sql语法详解5--HiveQL与SQL区别

- - SQL - 编程语言 - ITeye博客
1.hive内联支持什么格式. 3.hive中empty是否为null. 4.hive是否支持插入现有表或则分区中. 5.hive是否支持INSERT INTO 表 values(). 1、Hive不支持等值连接 . •SQL中对两表内联可以写成:. •分号是SQL语句结束标记,在HiveQL中也是,但是在HiveQL中,对分号的识别没有那么智慧,例如:.

基于Hadoop的数据仓库Hive 基础知识

- - IT瘾-bigdata
Hive是基于Hadoop的数据仓库工具,可对存储在HDFS上的文件中的数据集进行数据整理、特殊查询和分析处理,提供了类似于SQL语言的查询语言–HiveQL,可通过HQL语句实现简单的MR统计,Hive将HQL语句转换成MR任务进行执行. 数据仓库(Data Warehouse)是一个面向主题的(Subject Oriented)、集成的(Integrated)、相对稳定的(Non-Volatile)、反应历史变化(Time Variant)的数据集合,用于支持管理决策.

hive调优

- - 互联网 - ITeye博客
一、    控制hive任务中的map数: . 1.    通常情况下,作业会通过input的目录产生一个或者多个map任务. 主要的决定因素有: input的文件总个数,input的文件大小,集群设置的文件块大小(目前为128M, 可在hive中通过set dfs.block.size;命令查看到,该参数不能自定义修改);.

hive 优化 tips

- - CSDN博客推荐文章
一、     Hive join优化. 也可以显示声明进行map join:特别适用于小表join大表的时候,SELECT /*+ MAPJOIN(b) */ a.key, a.value FROM a join b on a.key = b.key. 2.     注意带表分区的join, 如:.

Hive中的join

- - CSDN博客云计算推荐文章
select a.* from a join b on a.id = b.id select a.* from a join b on (a.id = b.id and a.department = b.department). 在使用join写查询的时候有一个原则:应该将条目少的表或者子查询放在join操作符的左边.

hive优化(2)

- - 开源软件 - ITeye博客
Hive是将符合SQL语法的字符串解析生成可以在Hadoop上执行的MapReduce的工具. 使用Hive尽量按照分布式计算的一些特点来设计sql,和传统关系型数据库有区别,. 所以需要去掉原有关系型数据库下开发的一些固有思维. 1:尽量尽早地过滤数据,减少每个阶段的数据量,对于分区表要加分区,同时只选择需要使用到的字段.

hive优化

- - 开源软件 - ITeye博客
hive.optimize.cp=true:列裁剪. hive.optimize.prunner:分区裁剪. hive.limit.optimize.enable=true:优化LIMIT n语句. hive.limit.optimize.limit.file=10:最大文件数.   1.job的输入数据大小必须小于参数:hive.exec.mode.local.auto.inputbytes.max(默认128MB).

Hive优化

- - 互联网 - ITeye博客
     使用Hive有一段时间了,目前发现需要进行优化的较多出现在出现join、distinct的情况下,而且一般都是reduce过程较慢.      Reduce过程比较慢的现象又可以分为两类:. 情形一:map已经达到100%,而reduce阶段一直是99%,属于数据倾斜. 情形二:使用了count(distinct)或者group by的操作,现象是reduce有进度但是进度缓慢,31%-32%-34%...一个附带的提示是使用reduce个数很可能是1.

hive bucket 桶

- - CSDN博客推荐文章
对于每一个表(table)或者分区,Hive可以进一步组织成桶. Hive也是针对某一列进行桶的组织. Hive采用对列值哈希,然后除以桶的个数求余的方式决定该条记录存放在哪个桶当中. 采用桶能够带来一些好处,比如JOIN操作. 对于JOIN操作两个表有一个相同的列,如果对这两个表都进行了桶操作. 那么将保存相同列值的桶进行JOIN操作就可以,可以大大较少JOIN的数据量.