LinkedIn是如何利用数据分析驱动产品的?

标签: 前沿 LinkedIn 数据分析 | 发表时间:2014-03-07 20:19 | 作者:方荼
出处:http://www.pingwest.com

LinkedIndata

让我们看看这家全球最大的职业社交网站、第三大社交网络的运营数据。目前,LinkedIn有着2.7亿注册用户,大约400万家公司入驻,已经成为了职场人士最重要的在线交流和招聘求职平台。更引人注意的是它对高端企业用户的吸引力:大约90%左右的TOP100企业在使用Linkedin的服务。

从它的营收数据中也可以看出这些业务的增长潜力。LinkedIn的收入主要由人力解决方案(即招聘)、市场解决方案(精准广告)、订阅产品(针对个人的付费增值服务)构成,2013年Q4财报显示,这三项收入分别有2.456亿美元、1.135亿美元和8810万美元,同比涨幅分别达到53%、36%和48%。

实际上,LinkedIn的这一整套业务尤其是商业模式,是由数据分析和处理能力驱动的。随着注册用户数、入驻企业数量的增加,LinkedIn所需要处理的数据量也呈爆发性增长。社交网络上的每个用户产生的分享、评论和互相之间的互动都是数以TB乃至PB计,而为了让招聘者和求职者更准确地匹配,让广告推荐更加符合用户的真实喜好,准确和靠谱的数据分析是构建LinkedIn整个服务的基石。

在3月7日举办的阿里巴巴大数据峰会上,LinkedIn数据分析部资深总监Simon Zhang(张溪梦)详细介绍了数据在整个LinkedIn产品构建当中的重要性。他说,整个LinkedIn的商业模型由三个循环驱动的环节构成:首先是用户的增长以及用户的体验,其次,用户的增长和体验增加了很多的后台和前台的数据;第三,Linkedin会从这些新的数据里面发现更多的解决方案和产品,以推动商业的增长、用户的体验和用户数量的增加,从而进一步产生了更新的数据。

因此,数据实际上是贯穿整个LinkedIn产品的重要组成部分和驱动力。而针对数据的分析和处理,就成为驱动整个链条运作的关键一环。
Simon称,在他加入LinkedIn的9个月后,就确定了进行内部数据分析的三大原则:第一个是简单,任何人都能够看明白看懂;第二个是迅速,越慢结束度越低,越快接受度越高;第三是规模化,希望Linkedin内部所有的员工都能够用数据分析帮他们做决策。

LinkedIn是如何在数据分析中实践从而得出这三个原则的呢?

首先是推翻传统的数据分析方法,重新构建一个分析框架。LinkedIn进行数据分析的基础是:一,分析师要从产品、市场、销售和运营出发,先要了解和使用产品;二,进行产品追踪,实行产品数据标记,保证数据质量——也就是说分析师本身要分析自己以后要分析什么,这样才能把正确标记加到数据库里面去;三,数据和数据质量管理,即了解数据库之间的公用,流程,每种数据是怎么分工的。在这基础之上,才是传统分析中的专题分析、商业智能与报告、深度分析等等。

在完成整个分析框架底层的构建之后,就可以实现规模化了——把这些工作写入系统,系统可以模拟之前所做的大部分工作,然后让每个员工都能使用这些数据分析结果,从而进行进一步的决策。

相关阅读:

     “领英网”=LinkedIn中国,这只是第一步

     可穿戴设备都忙着分析数据,但它告诉你的到底靠不靠谱?

     LinkedIn如何继续讲一个高速增长的故事?

     原糯米网CEO沈博阳将出任LinkedIn中国区总裁

相关 [linkedin 利用 数据分析] 推荐:

LinkedIn是如何利用数据分析驱动产品的?

- - PingWest中文网
让我们看看这家全球最大的职业社交网站、第三大社交网络的运营数据. 目前,LinkedIn有着2.7亿注册用户,大约400万家公司入驻,已经成为了职场人士最重要的在线交流和招聘求职平台. 更引人注意的是它对高端企业用户的吸引力:大约90%左右的TOP100企业在使用Linkedin的服务. 从它的营收数据中也可以看出这些业务的增长潜力.

中国的LinkedIn们

- - It Talks-魏武挥的blog
我倒并不想完全断言中国BSNS没有一点点的未来,但做生意是真金白银的消耗,非常讲究一个timing问题. 中国BSNS,要想走出中国的LinkedIn的道路,恐怕得花上比LinkedIn自身发展更长的时间. 与目前股价一路扶摇直上的LinkedIn相比,中国的BSNS(商务社交,也有自称PSNS专业社交的)显得有些不愠不火,差强人意.

Excel 数据分析

- - ITeye博客
用Excel做数据分析——直方图. 已有 0 人发表留言,猛击->> 这里<<-参与讨论. —软件人才免语言低担保 赴美带薪读研.

向LinkedIn学习什么

- 车东 - 《商业价值》杂志
准确的定位和极优的数据整理能力,是LinkedIn最终成功的原因. 中国模仿者们需要模仿到基因层面才会有希望. 2010年12月,美国非上市公司股票交易平台SecondMarket评选出五大估值超10亿美元的非上市公司,LinkedIn挤掉Youtube等大热门而上榜. LinkedIn这家比Facebook还早的老牌社交网站,在将近10年的互联网大潮中,一直以低调稳健但内容乏味的姿态潜行.

中国会不会有Linkedin?

- zhangv - It Talks--上海魏武挥的博客
本周根据外电,Linkedin已经为自己的IPO做了定价,区间大致在32-35美元,预期募集资金2.71亿,估值在30-33亿美元. 这个主打所谓高端人群,74%会员受过高等教育,被誉为“职场SNS”的网络公司,拥有1亿用户,2010年营收2.43亿美元,利润1500多万. 据公司声称,在linkedin上,有200万个公司页面,73%的财富100强公司用过它的招聘解决方案,世界500强则全数成为它的会员.

[原]LinkedIn Cubert安装指南

- - OopsOutOfMemory盛利的博客
最近工作需要,调研了一下LinkedIn开源的用于复杂大数据分析的高性能计算引擎Cubert. 自己测了下,感觉比较适合做报表统计中的Cube计算和Join计算,效率往往比Hive高很多倍,节省资源和时间. 下面看下这个框架的介绍:. Cubert完全用Java开发,并提供一种脚本语言. 它是针对报表领域里经常出现的复杂连接和聚合而设计的.

LinkedIn架构这十年

- - 鸟窝
原文: A Brief History of Scaling LinkedIn. Josh Clemm是LinkedIn的高级工程经理,自2011年加入LinkedIn. 他最近(2015/07/20)写了一篇文章,介绍了LinkedIn针对用户规模急速扩大带来的架构方面的变革. 文章有点像子柳写的 淘宝技术这十年.

扯扯数据分析

- - 互联网分析
在别人的眼里数据分析既是很深奥的职业,也是被人挑战的职业,更是让你又恨又爱的职业. 其实这些都不重要的,重要的是对此行感兴趣,骨子里有量化一切的 意识. 很多人首先脑海中出现的是1、2、3……等等,为何有这样的印象. 其实是我们数据分析师为了更好的运用“统计学”所以要将许多 数据想尽办法来转化为1、2、3这样的数据形式,从而更深入、科学的分析data,不扯这个了,这个没什么意思,看图:.

数据分析那些事

- - 小蚊子乐园
今早突然有个想法,就是经常有网友会对数据分析方面有一些困惑,并且咨询我该怎么办. 并且经常是同样的问题,所以觉得有必要对一些经典共性的问题进行整理,与大家分享,这里并非标准答案,仅作参考. 欢迎提出自己对数据方面的疑问,将在此篇将持续更新,敬请关注. ----------------------------------------我不是完美的分割线--------------------------------------- .

谈大数据分析

- - 人月神话的BLOG
对于数据分析层,我们可以看到,其核心重点是针对海量数据形成一个分布式可弹性伸缩的,高查询性能的,支持标准sql语法的一个ODS库. 我们看到对于Hive,impala,InfoBright更多的都是解决这个层面的问题,即解决数据采集问题,解决采集后数据行列混合存储和压缩的问题,然后形成一个支撑标准sql预防的数据分析库.