如何在Hadoop里面实现二次排序

标签: hadoop 排序 | 发表时间:2014-04-15 14:35 | 作者:qindongliang1922
出处:http://www.iteye.com
在hadoop里面处理的数据,默认按输入内容的key进行排序的,大部分情况下,都可以满足的我们的业务需求,但有时候,可能出现类似以下的需求,输入内容:

秦东亮;72
秦东亮;34
秦东亮;100
三劫;899
三劫;32
三劫;1
a;45
b;567
b;12

要求输出1:
a	45
b	12,567
三劫	1,32,899
秦东亮	34,72,100

要求输出2:
a	45
b	12
b	567
三劫	1
三劫	32
三劫	899
秦东亮	34
秦东亮	72
秦东亮	100

注意上面的输出1,和输出2,其实都是一样的逻辑,只不过,输出的形式稍微改了下,那么今天散仙,就来分析下,怎么在hadoop里面,实现这样的需求。

其实这样的需求,就类似数据库的标准SQL分组
SELECT A,B FROM TABLE GROUP BY  A,B ORDER BY A,B
当然也不一定,是2个字段分组,可能有2个或2个以上的多个字段分组。
下面,我们先来看下MapReduce内部执行2次排序的流程图,这图是散仙收集的,画的很不错。



由上图可知,Map在处理数据时,先由InputFormat组件提供输入格式,然后Split一行数据,默认的是TextInputFormat,Key为字节偏移量,Value为内容,然后把这行数据,传给Map,Map根据某种约定的分隔符,进行拆分数据,进行业务处理,如果是计数的直接在Value上输出1,在Map输出前,如果有Combine组件,则会执行Combine阶段,进行本地Reduce,一般是用来优化程序用的,Combine执行完后,会执行Partition组件,进行数据分区,默认的是HashPartition,按照输出的Key的哈希值与上Integer的最大值,然后对reduce的个数进行取余得到的值,经过Partition后,数据就会被按桶输出到本地磁盘上,在输出的时候,会按照Key进行排序,然后等所有的Map执行完毕后,就会进入Reduce阶段,这个阶段会进行一个大的混洗阶段,术语叫shuffle,每个reduce都会去每个map输出的分区里面,拉取对应的一部分数据,这个时候,是最耗网络IO,以及磁盘IO的,是影响性能的一个重要瓶颈,当Reduce把所有的数据拉取完毕后,就会进行分组并按照Key进行排序,每处理好一个分组,都会调用一次Reduce函数,进行累加,或其他的业务处理,处理完毕后,就会通过OutputFormat进行输出到HDFS上,至此,整个流程就执行完毕。


代码如下:
package com.qin.groupsort;

import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;

import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.WritableComparable;
import org.apache.hadoop.io.WritableComparator;
import org.apache.hadoop.mapred.JobConf;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Partitioner;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.db.DBConfiguration;
import org.apache.hadoop.mapreduce.lib.db.DBInputFormat;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.MultipleOutputs;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;

import com.qin.operadb.PersonRecoder;
import com.qin.operadb.ReadMapDB;
 

/**
 * @author qindongliang
 * 
 * 大数据交流群:376932160
 * 
 * 
 * **/
public class GroupSort {
	
	/**
	 * map任务
	 * 
	 * */
	public static class GMapper extends Mapper<LongWritable, Text, DescSort, IntWritable>{
			
		
		private DescSort tx=new DescSort();
		private IntWritable second=new IntWritable();
		
		@Override
		protected void map(LongWritable key, Text value,Context context)
				throws IOException, InterruptedException {
			System.out.println("执行map");
			// System.out.println("进map了");
			//mos.write(namedOutput, key, value);
			String ss[]=value.toString().split(";");
			String mkey=ss[0];
			int mvalue=Integer.parseInt(ss[1]);
			tx.setFirstKey(mkey);
			tx.setSecondKey(mvalue);
			second.set(mvalue);
			context.write(tx, second);
		}
		
		
	}
	
	 
	 
 
	 /***
	  * Reduce任务
	  * 
	  * **/
	 public static class GReduce extends Reducer<DescSort, IntWritable, Text, Text>{
		 @Override
		protected void reduce(DescSort arg0, Iterable<IntWritable> arg1, Context ctx)
				throws IOException, InterruptedException {
			 System.out.println("执行reduce");
			 StringBuffer sb=new StringBuffer();
			 
			 for(IntWritable t:arg1){
				 
				// sb.append(t).append(",");
	
				 
				 //con
				 
				 ctx.write(new Text(arg0.getFirstKey()), new Text(t.toString())); 
				
				 
				 /**这种写法,是这种输出
				
				*a	45
				*b	12
				 b	567
				   三劫	1
				  三劫	32
				  三劫	899
				  秦东亮	34
				  秦东亮	72
				  秦东亮	100 
				 */ 
				 
				 
			 }
			 
			 if(sb.length()>0){
				 sb.deleteCharAt(sb.length()-1);//删除最后一位的逗号
			 }
			 
			 
//			 在循环里拼接,在循环外输出是这种格式
//			 b	12,567
//			 三劫	1,32,899
//			 秦东亮	34,72,100
			 // ctx.write(new Text(arg0.getFirstKey()), new Text(sb.toString())); 
			 
			 
		}
		 
	 
		 
	 }
	 
	 
	 /***
	  * 
	  * 自定义组合键
	  * **/
	 	public static class DescSort implements  WritableComparable{

	 		 public DescSort() {
				// TODO Auto-generated constructor stub
			}
	 		private String firstKey;
	 		private int secondKey;
	 		
	 		
	 		 public String getFirstKey() {
				return firstKey;
			}
			public void setFirstKey(String firstKey) {
				this.firstKey = firstKey;
			}
			public int getSecondKey() {
				return secondKey;
			}
			public void setSecondKey(int secondKey) {
				this.secondKey = secondKey;
			}
		 
			
			
			
//	 		 @Override
//	 		public int compare(byte[] arg0, int arg1, int arg2, byte[] arg3,
//	 				int arg4, int arg5) {
//	 			return -super.compare(arg0, arg1, arg2, arg3, arg4, arg5);//注意使用负号来完成降序
//	 		}
//	 		 
//	 		 @Override
//	 		public int compare(Object a, Object b) {
//	 	 
//	 			return   -super.compare(a, b);//注意使用负号来完成降序
//	 		}
			@Override
			public void readFields(DataInput in) throws IOException {
				// TODO Auto-generated method stub
				firstKey=in.readUTF();
				secondKey=in.readInt();
			}
			@Override
			public void write(DataOutput out) throws IOException {
				out.writeUTF(firstKey);
				out.writeInt(secondKey);
				
			}
			@Override
			public int compareTo(Object o) {
				// TODO Auto-generated method stub
				 DescSort d=(DescSort)o;
				 //this在前代表升序
				return this.getFirstKey().compareTo(d.getFirstKey());
			}
			 
	 		
	 	}
	 
	 	
	 	/**
	 	 * 主要就是对于分组进行排序,分组只按照组建键中的一个值进行分组
	 	 * 
	 	 * **/
	 	public static class TextComparator extends WritableComparator{

			 public TextComparator() {
				// TODO Auto-generated constructor stub
				 super(DescSort.class,true);//注册Comparator
			}
			 @Override
			public int compare(WritableComparable a, WritableComparable b) {
				System.out.println("执行TextComparator分组排序");
				 DescSort d1=(DescSort)a;
				 DescSort d2=(DescSort)b;
				 
				return  d1.getFirstKey().compareTo(d2.getFirstKey());
			}
	 		
	 	 
	 		
	 	}
	 	
	 	/**
	 	 * 组内排序的策略
	 	 * 按照第二个字段排序
	 	 * 
	 	 * */
	 	public static class TextIntCompartator extends WritableComparator{
	 		
	 		public TextIntCompartator() {
				super(DescSort.class,true);
			}
	 		
	 		@Override
	 		public int compare(WritableComparable a, WritableComparable b) {
	 			DescSort d1=(DescSort)a;
				DescSort d2=(DescSort)b;
	 			System.out.println("执行组内排序TextIntCompartator");
				if(!d1.getFirstKey().equals(d2.getFirstKey())){
					return d1.getFirstKey().compareTo(d2.getFirstKey());
				}else{
					
					return d1.getSecondKey()-d2.getSecondKey();//0,-1,1
					
				}
	 		}
	 		
	 	}
	 	
	 	/**
	 	 * 分区策略
	 	 * 
	 	 * */
	 public static class KeyPartition extends Partitioner<DescSort, IntWritable>{
		 
		 
		 @Override
		public int getPartition(DescSort key, IntWritable arg1, int arg2) {
			// TODO Auto-generated method stub
			 System.out.println("执行自定义分区KeyPartition");
			return (key.getFirstKey().hashCode()&Integer.MAX_VALUE)%arg2;
		} 
	 }
	 	
	 	
	 public static void main(String[] args) throws Exception{
		 JobConf conf=new JobConf(ReadMapDB.class);
		 //Configuration conf=new Configuration();
	  	  conf.set("mapred.job.tracker","192.168.75.130:9001");
		//读取person中的数据字段
	  	  conf.setJar("tt.jar");
		//注意这行代码放在最前面,进行初始化,否则会报
	 
	 
		/**Job任务**/
		Job job=new Job(conf, "testpartion");
		job.setJarByClass(GroupSort.class);
		System.out.println("模式:  "+conf.get("mapred.job.tracker"));;
		// job.setCombinerClass(PCombine.class);
	
		 
		 
		// job.setNumReduceTasks(3);//设置为3
		 job.setMapperClass(GMapper.class);
		 job.setReducerClass(GReduce.class);
		
		 /**设置分区函数*/
		job.setPartitionerClass(KeyPartition.class);
		
		//分组函数,Reduce前的一次排序
		 job.setGroupingComparatorClass(TextComparator.class);
		//组内排序Map输出完毕后,对key进行的一次排序
		
		 
		 
		 job.setSortComparatorClass(TextIntCompartator.class);
		
		//TextComparator.class
		//TextIntCompartator.class
		// job.setGroupingComparatorClass(TextIntCompartator.class);
		//组内排序Map输出完毕后,对key进行的一次排序
		 // job.setSortComparatorClass(TextComparator.class);
		
		
		
		 job.setMapOutputKeyClass(DescSort.class);
		 job.setMapOutputValueClass(IntWritable.class);
		 job.setOutputKeyClass(Text.class);
		 job.setOutputValueClass(Text.class);
	    
		String path="hdfs://192.168.75.130:9000/root/outputdb";
		FileSystem fs=FileSystem.get(conf);
		Path p=new Path(path);
		if(fs.exists(p)){
			fs.delete(p, true);
			System.out.println("输出路径存在,已删除!");
		}
		FileInputFormat.setInputPaths(job, "hdfs://192.168.75.130:9000/root/input");
		FileOutputFormat.setOutputPath(job,p );
		System.exit(job.waitForCompletion(true) ? 0 : 1);  
		 
		 
	}
	
	

}

在eclipse下,执行,打印日志内容如下:
模式:  192.168.75.130:9001
输出路径存在,已删除!
WARN - JobClient.copyAndConfigureFiles(746) | Use GenericOptionsParser for parsing the arguments. Applications should implement Tool for the same.
INFO - FileInputFormat.listStatus(237) | Total input paths to process : 1
WARN - NativeCodeLoader.<clinit>(52) | Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
WARN - LoadSnappy.<clinit>(46) | Snappy native library not loaded
INFO - JobClient.monitorAndPrintJob(1380) | Running job: job_201404152114_0003
INFO - JobClient.monitorAndPrintJob(1393) |  map 0% reduce 0%
INFO - JobClient.monitorAndPrintJob(1393) |  map 100% reduce 0%
INFO - JobClient.monitorAndPrintJob(1393) |  map 100% reduce 33%
INFO - JobClient.monitorAndPrintJob(1393) |  map 100% reduce 100%
INFO - JobClient.monitorAndPrintJob(1448) | Job complete: job_201404152114_0003
INFO - Counters.log(585) | Counters: 29
INFO - Counters.log(587) |   Job Counters 
INFO - Counters.log(589) |     Launched reduce tasks=1
INFO - Counters.log(589) |     SLOTS_MILLIS_MAPS=7040
INFO - Counters.log(589) |     Total time spent by all reduces waiting after reserving slots (ms)=0
INFO - Counters.log(589) |     Total time spent by all maps waiting after reserving slots (ms)=0
INFO - Counters.log(589) |     Launched map tasks=1
INFO - Counters.log(589) |     Data-local map tasks=1
INFO - Counters.log(589) |     SLOTS_MILLIS_REDUCES=9807
INFO - Counters.log(587) |   File Output Format Counters 
INFO - Counters.log(589) |     Bytes Written=86
INFO - Counters.log(587) |   FileSystemCounters
INFO - Counters.log(589) |     FILE_BYTES_READ=162
INFO - Counters.log(589) |     HDFS_BYTES_READ=205
INFO - Counters.log(589) |     FILE_BYTES_WRITTEN=111232
INFO - Counters.log(589) |     HDFS_BYTES_WRITTEN=86
INFO - Counters.log(587) |   File Input Format Counters 
INFO - Counters.log(589) |     Bytes Read=93
INFO - Counters.log(587) |   Map-Reduce Framework
INFO - Counters.log(589) |     Map output materialized bytes=162
INFO - Counters.log(589) |     Map input records=9
INFO - Counters.log(589) |     Reduce shuffle bytes=162
INFO - Counters.log(589) |     Spilled Records=18
INFO - Counters.log(589) |     Map output bytes=138
INFO - Counters.log(589) |     Total committed heap usage (bytes)=176033792
INFO - Counters.log(589) |     CPU time spent (ms)=970
INFO - Counters.log(589) |     Combine input records=0
INFO - Counters.log(589) |     SPLIT_RAW_BYTES=112
INFO - Counters.log(589) |     Reduce input records=9
INFO - Counters.log(589) |     Reduce input groups=4
INFO - Counters.log(589) |     Combine output records=0
INFO - Counters.log(589) |     Physical memory (bytes) snapshot=258830336
INFO - Counters.log(589) |     Reduce output records=9
INFO - Counters.log(589) |     Virtual memory (bytes) snapshot=1461055488
INFO - Counters.log(589) |     Map output records=9

执行完,我们在输出目录里里面查看



执行完,内容如下:
a	45
b	12
b	567
三劫	1
三劫	32
三劫	899
秦东亮	34
秦东亮	72
秦东亮	100


我们发现,跟我们预期的结果一致,熟悉MapReduce的执行原理,可以帮助我们更好的使用Hive,因为Hive本身就是一个或多个MapReduce作业构成的,Hive语句的优化,对MapReduce作业的影响的性能也是不容忽视的,所以我们一定要多熟悉熟悉MapReduce编程的模型,以便于我们对它有一个更清晰的认识和了解。







已有 0 人发表留言,猛击->> 这里<<-参与讨论


ITeye推荐



相关 [hadoop 排序] 推荐:

hadoop 二次排序

- - 企业架构 - ITeye博客
hadoop的工作流程:. 是在key中,排序value的实现,思路是. 1.把value中需要有序的部分value-part放入key中. 2.sortCompare类或key的CompareTo方法中完成对key+value-part的比较. 3.GroupingCompare中只对key进行比较,这样相同的key跌倒获取到reduce中.

Hadoop中的各种排序

- - 互联网 - ITeye博客
1:shuffle阶段的排序(部分排序). shuffle阶段的排序可以理解成两部分,一个是对spill进行分区时,由于一个分区包含多个key值,所以要对分区内的按照key进行排序,即key值相同的一串存放在一起,这样一个partition内按照key值整体有序了.

hadoop复合键排序使用方法

- - CSDN博客云计算推荐文章
在hadoop中处理复杂业务时,需要用到复合键,复合不同于单纯的继承Writable接口,而是继承了WritableComparable接口,而实际上,WritableComparable接口继承了Writable和Comparable接口,如果只需要使用某一个类作为传值对象而不是作为key,继承Writable接口即可.

利用hadoop mapreduce 做数据排序

- - zzm
我们的需求是想统计一个文件中用IK分词后每个词出现的次数,然后按照出现的次数降序排列. 由于hadoop在reduce之后就不能对结果做什么了,所以只能分为两个job完成,第一个job统计次数,第二个job对第一个job的结果排序. 第一个job的就是hadoop最简单的例子countwords,我要说的是用hadoop对结果排序.

Hadoop初体验――搭建hadoop简单实现文本数据全局排序

- - 学着站在巨人的肩膀上
      手头上有三台配置一样的电脑,就不去装虚拟机了,配置如下:.       三台电脑装有相同的操作系统――Ubuntu 11.04.       任选一台机器作为master,其他机器作为slaves,所有机器拥有相同的用户、相同的环境变量配置、相同的hadoop目录结构、相同的Java目录结构.

Hadoop中的排序器/组合器/合并器

- - 学着站在巨人的肩膀上
目前,海量数据处理主要存在二个问题:大规模计算(cpu+mem)、海量数据存储(disk),而Hadoop被专门设计用来针对海量数据的处理,它通过分布式文件系统解决海量数据的存储问题,组织成千上万个计算节点来共同完成一个任务解决了大规模计算问题. Hadoop的核心是MapReduce,而不是分布式文件系统HDFS,这是因为MapRduce所依赖的存储系统并不依赖于任何一个文件系统,甚至是分布式文件系统.

如何在Hadoop里面实现二次排序

- - 编程语言 - ITeye博客
在hadoop里面处理的数据,默认按输入内容的key进行排序的,大部分情况下,都可以满足的我们的业务需求,但有时候,可能出现类似以下的需求,输入内容:. 秦东亮;72 秦东亮;34 秦东亮;100 三劫;899 三劫;32 三劫;1 a;45 b;567 b;12. 注意上面的输出1,和输出2,其实都是一样的逻辑,只不过,输出的形式稍微改了下,那么今天散仙,就来分析下,怎么在hadoop里面,实现这样的需求.

如何使用hadoop对海量数据进行统计并排序

- - ITeye博客
hadoop在如下的几种应用场景里,用的还是非常广泛的,1,搜索引擎建索引,2,topK热关键词统计,3,海量日志的数据分析等等. 散仙,今天的这个例子的场景要对几亿的单词或短语做统计和并按词频排序,当然这些需求都是类似WordCount问题,如果你把Hadoop自带的WordCount的例子,给搞懂了,基本上做一些IP,热词的统计与分析就很很容易了,WordCount问题,确实是一个非常具有代表性的例子.

Hadoop二次排序关键点和出现时机(也叫辅助排序、Secondary Sort)

- - The Big Data Way,平凡但不乏味
    Hadoop二次排序在面试的时候出现频率还是比较高的. 今天花了点时间通过源码深入学习了一下. 后面内容以Hadoop自带实例——SecondarySort讲解.     它的作用是决定数据分区,说白了就是决定map输出key-value由哪个reduce处理,每个map task输出的key-value都会执行Partitioner的getPartition()方法,用于返回当前key-value由哪个reduce处理.

Hadoop Streaming 编程

- - 学着站在巨人的肩膀上
Hadoop Streaming是Hadoop提供的一个编程工具,它允许用户使用任何可执行文件或者脚本文件作为Mapper和Reducer,例如:. 采用shell脚本语言中的一些命令作为mapper和reducer(cat作为mapper,wc作为reducer). 本文安排如下,第二节介绍Hadoop Streaming的原理,第三节介绍Hadoop Streaming的使用方法,第四节介绍Hadoop Streaming的程序编写方法,在这一节中,用C++、C、shell脚本 和python实现了WordCount作业,第五节总结了常见的问题.