mapreduce中实现对hbase中表数据的添加 - Liqizhou

标签: mapreduce hbase 数据 | 发表时间:2012-08-23 16:01 | 作者:Liqizhou
出处:

mapreduce中实现对hbase中表数据的添加

 

  参考网址:http://www.javabloger.com/article/hadoop-mapreduce-hbase.html

       根据参考网址中的小实例,自己亲自实现了一下,记录一下自己对该程序的一些理解。

       实例:先将数据文件上传到HDFS,然后用MapReduce进行处理,将处理后的数据插入到hbase中。代码如下:

       首先是Mapper:

package txt_to_hbase;

import java.io.IOException;

import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

public class THMapper extends Mapper<LongWritable,Text,Text,Text>{
public void map(LongWritable key,Text value,Context context){
String[] items = value.toString().split(" ");
String k = items[0];
String v = items[1];
System.out.println("key:"+k+","+"value:"+v);
try {

context.write(new Text(k), new Text(v));

} catch (IOException e) {
// TODO Auto-generated catch block
e.printStackTrace();
} catch (InterruptedException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}

}

}

  然后是Reduce:

package txt_to_hbase;

import java.io.IOException;

import org.apache.hadoop.hbase.client.Put;
import org.apache.hadoop.hbase.io.ImmutableBytesWritable;
import org.apache.hadoop.hbase.mapreduce.TableReducer;
import org.apache.hadoop.io.Text;

public class THReducer extends TableReducer<Text,Text,ImmutableBytesWritable>{
public void reduce(Text key,Iterable<Text> value,Context context){
String k = key.toString();
String v = value.iterator().next().toString(); //由数据知道value就只有一行
Put putrow = new Put(k.getBytes());
putrow.add("f1".getBytes(), "qualifier".getBytes(), v.getBytes());
try {

context.write(new ImmutableBytesWritable(key.getBytes()), putrow);

} catch (IOException e) {
// TODO Auto-generated catch block
e.printStackTrace();
} catch (InterruptedException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}

}

}

  然后是Driver:

package txt_to_hbase;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.mapreduce.TableMapReduceUtil;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.util.Tool;

public class THDriver extends Configured implements Tool{

@Override
public int run(String[] arg0) throws Exception {
// TODO Auto-generated method stub
Configuration conf = HBaseConfiguration.create();
conf.set("hbase.zookeeper.quorum.", "localhost"); //千万别忘记配置

Job job = new Job(conf,"Txt-to-Hbase");
job.setJarByClass(TxtHbase.class);

Path in = new Path("/home/daisy/inout/txthbase/");

job.setInputFormatClass(TextInputFormat.class);
FileInputFormat.addInputPath(job, in);

job.setMapperClass(THMapper.class);
job.setReducerClass(THReducer.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(Text.class);

TableMapReduceUtil.initTableReducerJob("tab1", THReducer.class, job);

job.waitForCompletion(true);
return 0;
}

}

  最后是主类:

package txt_to_hbase;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.util.ToolRunner;

public class TxtHbase {
public static void main(String [] args) throws Exception{
int mr;
mr = ToolRunner.run(new Configuration(),new THDriver(),args);
System.exit(mr);
}
}


  输入文件是3个txt文件,每个txt中的文件内容均是如下格式:

1 name1--txt1-www.javabloger.com

2 name2--txt1

3 name3--txt1

4 name4--txt1

5 name5--txt1

  通过以上代码,mapreduce实现之后,在hbase的shell中查看tab1表,如下:

hbase(main):009:0> scan 'tab1'
ROW COLUMN+CELL
1 column=f1:qualifier, timestamp=1320235555118, value=name1--txt1-www.javabloger.com
10 column=f1:qualifier, timestamp=1320235555118, value=name10--txt2
11 column=f1:qualifier, timestamp=1320235555118, value=name11--txt3-www.javabloger.com
12 column=f1:qualifier, timestamp=1320235555118, value=name12--txt3
13 column=f1:qualifier, timestamp=1320235555118, value=name13--txt3
14 column=f1:qualifier, timestamp=1320235555118, value=name14--txt3
15 column=f1:qualifier, timestamp=1320235555118, value=name15--txt3
2 column=f1:qualifier, timestamp=1320235555118, value=name2--txt1
3 column=f1:qualifier, timestamp=1320235555118, value=name3--txt1
4 column=f1:qualifier, timestamp=1320235555118, value=name4--txt1
5 column=f1:qualifier, timestamp=1320235555118, value=name5--txt1
6 column=f1:qualifier, timestamp=1320235555118, value=name6--txt2-www.javabloger.com
7 column=f1:qualifier, timestamp=1320235555118, value=name7--txt2
8 column=f1:qualifier, timestamp=1320235555118, value=name8--txt2
9 column=f1:qualifier, timestamp=1320235555118, value=name9--txt2
15 row(s) in 0.0570 seconds

  Map跟普通的mapreduce函数没有多大区别,正常的TextInputFormat方式输入,按行读取。

       Reduce中要把处理之后的结果写入hbase的表中,所以与普通的mapreduce程序有些区别,由以上代码可以知道,reduce类继承的是 TableReducer,通过查询API(如下图1)知道,它也是一种基本的Reducer类,与其他的reduce类一样,它的输入k/v对是对应Map的输出k/v对,它的输出key可以是任意的类型,但是value必须是一个put或delete实例。

                                                                        图1:TableReducer类详解  

  Reduce的输出key是 ImmutableWritable类型(org.apache.hadoop.hase.io),API中的解释,它是一个可以用作key或value类型的字节序列,该类型基于BytesWritable,不能调整大小。Reduce的输出value是一个put。如上面代码:   context.write(new ImmutableBytesWritable(key.getBytes()), putrow);

       Driver中job配置的时候没有设置 job.setReduceClass(); 而是用 TableMapReduceUtil.initTableReducerJob("tab1", THReducer.class, job); 来执行reduce类。

       TableMapReduceUtil类(org.apache.hadoop.hbase.mapreduce):a utility for TableMapper or TableReducer。因为本例子中的reduce继承的是TableReducer,所以也就解释了用TableMapReduceUtil来执行的原因。该类的方法有: addDependencyJars(), initTableMapperJob(), initTableReducerJob(), limitNumReduceTasks(), setNumReduceTasks()等,详细包括参数等可以查看API。

       同时注意本程序代码的格式,将Map,Reduce,以及Job的配置分离,比较清晰。之前写代码喜欢把map,reduce 以及job配置全都写在一个类中,可能这是一种不太好的习惯。这里注意Driver类,要继承 Configured 类和实现 Tool 接口,以及实现Tool中的run方法,在run方法中对job进行配置。 同时main函数中用ToolRunner.run() 方法来调用Driver类。

       本人的一点理解,如有错误,欢迎指正,也欢迎大家一起交流mapreduce编程的知识,我的email:[email protected]  。




本文链接: http://www.cnblogs.com/liqizhou/archive/2012/08/23/2652611.html,转载请注明。

相关 [mapreduce hbase 数据] 推荐:

mapreduce中实现对hbase中表数据的添加 - Liqizhou

- - 博客园_BIGBIGBOAT
mapreduce中实现对hbase中表数据的添加.   参考网址:http://www.javabloger.com/article/hadoop-mapreduce-hbase.html.        根据参考网址中的小实例,自己亲自实现了一下,记录一下自己对该程序的一些理解.        实例:先将数据文件上传到HDFS,然后用MapReduce进行处理,将处理后的数据插入到hbase中.

"Hadoop/MapReduce/HBase"分享总结

- - ITeye博客
此分享是关于hadoop生态系统的简单介绍包括起源到相对应用. Hadoop和HBase.pdf (2.1 MB). 已有 0 人发表留言,猛击->> 这里<<-参与讨论. —软件人才免语言低担保 赴美带薪读研.

MapReduce生成HFile入库到HBase

- - 博客园_首页
一、这种方式有很多的优点:. 如果我们一次性入库hbase巨量数据,处理速度慢不说,还特别占用Region资源, 一个比较高效便捷的方法就是使用 “Bulk Loading”方法,即HBase提供的HFileOutputFormat类. 它是利用hbase的数据信息按照特定格式存储在hdfs内这一原理,直接生成这种hdfs内存储的数据格式文件,然后上传至合适位置,即完成巨量数据快速入库的办法.

HBASE数据架构

- - 数据库 - ITeye博客
关系数据库一般用B+树,HBASE用的是LSM树. MYSQL所用类B+树一般深度不超过3层,数据单独存放,在B+树的叶节点存储指向实际数据的指针,叶节点之间也相互关联,类似双向链表. 这种结构的特点是数据更新或写入导致数据页表分散,不利于顺序访问. LSM存储中,各个文件的结构类似于B+树,但是分多个存在内存或磁盘中,更新和写入变成了磁盘的顺序写,只在合并时去掉重复或过时的数据.

利用hadoop mapreduce 做数据排序

- - zzm
我们的需求是想统计一个文件中用IK分词后每个词出现的次数,然后按照出现的次数降序排列. 由于hadoop在reduce之后就不能对结果做什么了,所以只能分为两个job完成,第一个job统计次数,第二个job对第一个job的结果排序. 第一个job的就是hadoop最简单的例子countwords,我要说的是用hadoop对结果排序.

hbase写数据过程

- - 数据库 - ITeye博客
博文说明:1、研究版本hbase0.94.12;2、贴出的源代码可能会有删减,只保留关键的代码. 从client和server两个方面探讨hbase的写数据过程.     写数据主要是HTable的单条写和批量写两个API,源码如下:. hbase写数据的客户端核心方法是HConnectionManager的processBatchCallback方法,相关源码如下:.

HBase数据查询之Coprocessor

- - 开源软件 - ITeye博客
协处理器的概念、作用和类型不介绍,可以参看:http://www.cnblogs.com/ventlam/archive/2012/10/30/2747024.html,官方blog:https://blogs.apache.org/hbase/entry/coprocessor_introduction.

从hbase(hive)将数据导出到mysql

- - CSDN博客云计算推荐文章
在上一篇文章《 用sqoop进行mysql和hdfs系统间的数据互导》中,提到sqoop可以让RDBMS和HDFS之间互导数据,并且也支持从mysql中导入到HBase,但从HBase直接导入mysql则不是直接支持,而是间接支持. 要么将HBase导出到HDFS平面文件,要么将其导出到Hive中,再导出到mysql.

通过HBase Observer同步数据到ElasticSearch

- - SegmentFault 最新的文章
Observer希望解决的问题. HBase是一个分布式的存储体系,数据按照RowKey分成不同的Region,再分配给RegionServer管理. 但是RegionServer只承担了存储的功能,如果Region能拥有一部分的计算能力,从而实现一个HBase框架上的MapReduce,那HBase的操作性能将进一步提升.

HBase基本数据操作详解

- - 互联网 - ITeye博客
之前详细写了一篇HBase过滤器的文章,今天把基础的表和数据相关操作补上. 本文档 参考最新 (截止2014年7月16日)的 官方 Ref Guide、 Developer API编写. 所有代码均基于“hbase  0.96.2-hadoop2 ”版本编写,均实测通过. 对于建表,和RDBMS类似,HBase也有namespace的概念,可以指定表空间创建表,也可以直接创建表,进入default表空间.