从事“大数据”工作的三大方向 十大职位

标签: 从事 大数据 工作 | 发表时间:2014-08-16 21:48 | 作者:shao_lixin
出处:http://www.iteye.com
转载:http://tieba.baidu.com/p/2857041806
随着大数据的趋势引起的越来越多的重视,各大企业对与大数据相关高端人才的需求也越来越紧迫。这一趋势,也给想要从事大数据方面工作的人员提供了难得的职业发展机遇。
目前,大数据方面的工作人员主要有三大就业方向:大数据系统研发类人才、大数据应用开发类人才和大数据分析类人才。在此三大方向中,各自的基础岗位一般为大数据系统研发工程师、大数据应用开发工程师和数据分析师。
 从企业方面来说,大数据人才大致可以分为产品和市场分析、安全和风险分析以及商业智能三大领域。产品分析是指通过算法来测试新产品的有效性,是一个相对较新的领域。在安全和风险分析方面,数据科学家们知道需要收集哪些数据、如何进行快速分析,并最终通过分析信息来有效遏制网络入侵或抓住网络罪犯。
对于想从事大数据工作的求职者来说,如何根据自身条件进行职位选择?下面介绍十种与“大数据”相关的热门职位:
一、ETL研发
随着数据种类的不断增加,企业对数据整合专业人才的需求越来越旺盛。ETL开发者与不同的数据来源和组织打交道,从不同的源头抽取数据,转换并导入数据仓库以满足企业的需要。
ETL研发,主要负责将分散的、异构数据源中的数据如关系数据、平面数据文件等抽取到临时中间层后进行清洗、转换、集成,最后加载到数据仓库或数据集市中,成为联机分析处理、数据挖掘的基础。
目前,ETL行业相对成熟,相关岗位的工作生命周期比较长,通常由内部员工和外包合同商之间通力完成。ETL人才在大数据时代炙手可热的原因之一是:在企业大数据应用的早期阶段,Hadoop只是穷人的ETL。
二、Hadoop开发
Hadoop的核心是HDFS和MapReduce.HDFS提供了海量数据的存储,MapReduce提供了对数据的计算。随着数据集规模不断增大,而传统BI的数据处理成本过高,企业对Hadoop及相关的廉价数据处理技术如Hive、HBase、MapReduce、Pig等的需求将持续增长。如今具备Hadoop框架经验的技术人员是最抢手的大数据人才。
三、可视化工具开发
海量数据的分析是个大挑战,而新型数据可视化工具如Spotifre,Qlikview和Tableau可以直观高效地展示数据。
可视化开发就是在可视开发工具提供的图形用户界面上,通过操作界面元素,由可视开发工具自动生成应用软件。还可轻松跨越多个资源和层次连接您的所有数据,经过时间考验,完全可扩展的,功能丰富全面的可视化组件库为开发人员提供了功能完整并且简单易用的组件集合,以用来构建极其丰富的用户界面。
过去,数据可视化属于商业智能开发者类别,但是随着Hadoop的崛起,数据可视化已经成了一项独立的专业技能和岗位。
四、信息架构开发
大数据重新激发了主数据管理的热潮。充分开发利用企业数据并支持决策需要非常专业的技能。信息架构师必须了解如何定义和存档关键元素,确保以最有效的方式进行数据管理和利用。信息架构师的关键技能包括主数据管理、业务知识和数据建模等。
五、数据仓库研究
数据仓库是为企业所有级别的决策制定过程提供支持的所有类型数据的战略集合。它是单个数据存储,出于分析性报告和决策支持的目的而创建。为企业提供需要业务智能来指导业务流程改进和监视时间、成本、质量和控制。
数据仓库的专家熟悉Teradata、Neteeza和Exadata等公司的大数据一体机。能够在这些一体机上完成数据集成、管理和性能优化等工作。
六、OLAP开发
随着数据库技术的发展和应用,数据库存储的数据量从20世纪80年代的兆(M)字节及千兆(G)字节过渡到现在的兆兆(T)字节和千兆兆(P)字节,同时,用户的查询需求也越来越复杂,涉及的已不仅是查询或操纵一张关系表中的一条或几条记录,而且要对多张表中千万条记录的数据进行数据分析和信息综合。联机分析处理(OLAP)系统就负责解决此类海量数据处理的问题。
OLAP在线联机分析开发者,负责将数据从关系型或非关系型数据源中抽取出来建立模型,然后创建数据访问的用户界面,提供高性能的预定义查询功能。
七、数据科学研究
这一职位过去也被称为数据架构研究,数据科学家是一个全新的工种,能够将企业的数据和技术转化为企业的商业价值。随着数据学的进展,越来越多的实际工作将会直接针对数据进行,这将使人类认识数据,从而认识自然和行为。因此,数据科学家首先应当具备优秀的沟通技能,能够同时将数据分析结果解释给IT部门和业务部门领导。
总的来说,数据科学家是分析师、艺术家的合体,需要具备多种交叉科学和商业技能。
八、数据预测分析
 营销部门经常使用预测分析预测用户行为或锁定目标用户。预测分析开发者有些场景看上有有些类似数据科学家,即在企业历史数据的基础上通过假设来测试阈值并预测未来的表现。
九、企业数据管理
企业要提高数据质量必须考虑进行数据管理,并需要为此设立数据管家职位,这一职位的人员需要能够利用各种技术工具汇集企业周围的大量数据,并将数据清洗和规范化,将数据导入数据仓库中,成为一个可用的版本。然后,通过报表和分析技术,数据被切片、切块,并交付给成千上万的人。担当数据管家的人,需要保证市场数据的完整性,准确性,唯一性,真实性和不冗余。
十、数据安全研究
数据安全这一职位,主要负责企业内部大型服务器、存储、数据安全管理工作,并对网络、信息安全项目进行规划、设计和实施。数据安全研究员还需要具有较强的管理经验,具备运维管理方面的知识和能力,对企业传统业务有较深刻的理解,才能确保企业数据安全做到一丝不漏。

已有 0 人发表留言,猛击->> 这里<<-参与讨论


ITeye推荐



相关 [从事 大数据 工作] 推荐:

从事“大数据”工作的三大方向 十大职位

- - 非技术 - ITeye博客
转载:http://tieba.baidu.com/p/2857041806. 随着大数据的趋势引起的越来越多的重视,各大企业对与大数据相关高端人才的需求也越来越紧迫. 这一趋势,也给想要从事大数据方面工作的人员提供了难得的职业发展机遇. 目前,大数据方面的工作人员主要有三大就业方向:大数据系统研发类人才、大数据应用开发类人才和大数据分析类人才.

2014年八大最热门的大数据工作

- - IT经理网
大数据时代,数据过剩,人才短缺,越来越多的IT专业人士希望能够进入充满机遇的大数据领域,但是,到底哪些具体的大数据专业岗位和人才最为吃香呢. 人力资源公司Kforce近日发布了一份报告根据 IT职业薪酬水平给出了2014年最热门的十大大数据工作职位(年薪):. 一、ETL开发者(11-13万美元).

想从事人工智能和大数据的学生们,这里有几条职业建议给你

- - 雷锋网
雷锋网 AI 科技评论按:人工智能、大数据的热度一直在延续. 越来越多的企业把人工智能和大数据运用在自己的产品设计和长期规划中,相关职位的招聘待遇诱人且竞争火热;高校也积极扩展相关专业,培养出越来越多计算机科学出身的可用之才. 在这样竞争激烈的环境之中,一些关于未来职业规划的建议肯定会对如今的学生、未来的科技骨干人才们有所帮助.

从事造价工作需要多少施工知识?

- - 知乎每日精选
有很多朋友问过同样一个问题,就是学造价是不是要先做几年施工员再转行比较好,今天咱们来谈谈这个问题. 感谢 @陈子善 先生的提醒, 本文中的造价师是指在造价咨询公司工作的造价师,对于在施工单位做成本管理的造价师并不是特别适用. 首先先回答一个问题,有些人会说,你如果都施工工艺一窍不通,那么叫人怎么说服别人同意你的方案.

黑客或者从事安全领域工作的人用metasploit、Nessus这些工具用的多吗? - 知乎

- -
作为一个世界500强的金融企业,我们对于漏洞自查这块,完全依赖于商业版Findstone,在买这个以前,自查都用的免费版Nessus. 上面反映的威胁,中、高、高危一律限期整改,结束. 我们会自己写脚本来加固标装OS,会聘请军工来对自己进行透渗试测,会优化基线并推行,但是不会自己写工具实现自己的需求.

谈大数据(2)

- - 人月神话的BLOG
对于大数据,后面会作为一个系列来谈,大数据涉及的方面特别多,包括主数据,数据中心和ODS,SOA,云计算,业务BI等很多方面的内容. 前面看到一个提法,即大数据会让我们更加关注业务方面的内容,而云平台则更多是技术层面的内容. 对于大数据会先把各个理解的关键点谈完了,再系统来看大数据的完整解决方案和体系化.

大数据之惑

- - 互联网分析
算起来,接触大数据、和互联网之外的客户谈大数据也有快2年了. 也该是时候整理下一些感受,和大家分享下我看到的国内大数据应用的一些困惑了. 云和大数据,应该是近几年IT炒的最热的两个话题了. 在我看来,这两者之间的不同就是: 云是做新的瓶,装旧的酒; 大数据是找合适的瓶,酿新的酒. 云说到底是一种基础架构的革命.

白话大数据

- - 互联网分析
这个时代,你在外面混,无论是技术还是产品还是运营还是商务,如果嘴里说不出“大数据”“云存储”“云计算”,真不好意思在同行面前抬头. 是千万级别的用户信息还是动辄XXXTB的数据量. 其实,大数据在我的眼里,不是一门技术,而是一种技能,从数据中去发现价值挖掘价值的技能. ”当我掷地有声用这句话开场时,正好一个妹子推门而入,听到这句话,微微一怔,低头坐下.

交通大数据

- - 人月神话的BLOG
本文简单谈下智慧交通场景下可能出现的大数据需求和具体应用价值. 对于公交线路规划和设计是一个大数据潜在的应用场景,传统的公交线路规划往往需要在前期投入大量的人力进行OD调查和数据收集. 特别是在公交卡普及后可以看到,对于OD流量数据完全可以从公交一卡通中采集到相关的交通流量和流向数据,包括同一张卡每天的行走路线和换乘次数等详细信息.

大二的学生想从事科学研究工作,但是感觉理论知识不够,同龄人都是怎么做到的?

- - 知乎每日精选
很有意思的是,我现在就是一个国创计划的负责人. 研究的东西恰好就是知乎,我们对知乎的“风格”很感兴趣,她真的很特别. (我肯定不会在百度知道做这些事情). 1.首先肯定你对所学的热诚,这一点非常重要. 一个人只有真的对专业知识感兴趣,他才会去思考和研究,才会发问——正如你正在做的那样. 2.其次说说我对大学生(包括我自己)做这个小东西的想法.