[MySQL优化案例]系列 — 分页优化

标签: mysql mysql优化 分页 查询优化 优化 | 发表时间:2014-08-27 14:09 | 作者:admin
出处:http://blog.haohtml.com

通常,我们会采用ORDER BY LIMIT start, offset 的方式来进行分页查询。例如下面这个SQL:

SELECT * FROM `t1` WHERE ftype=1 ORDER BY id DESC LIMIT 100, 10;

或者像下面这个不带任何条件的分页SQL:

SELECT * FROM `t1` ORDER BY id DESC LIMIT 100, 10;

一般而言,分页SQL的耗时随着 start 值的增加而急剧增加,我们来看下面这2个不同起始值的分页SQL执行耗时:

[email protected]> SELECT * FROM `t1` WHERE ftype=1 ORDER BY id DESC LIMIT 500, 10;
…

10 rows in set (0.05 sec)


[email protected]> SELECT * FROM `t1` WHERE ftype=6 ORDER BY id DESC LIMIT 935500, 10;
…

10 rows in set (2.39 sec)

可以看到,随着分页数量的增加,SQL查询耗时也有数十倍增加,显然不科学。今天我们就来分析下,如何能优化这个分页方案。 一般滴,想要优化分页的终极方案就是:没有分页,哈哈哈~~~,不要说我讲废话,确实如此,可以把分页算法交给Sphinx、Lucence等第三方解决方案,没必要让MySQL来做它不擅长的事情。 当然了,有小伙伴说,用第三方太麻烦了,我们就想用MySQL来做这个分页,咋办呢?莫急,且待我们慢慢分析,先看下表DDL、数据量、查询SQL的执行计划等信息:

[email protected]> SHOW CREATE TABLE `t1`;
CREATE TABLE `t1` (
 `id` int(10) unsigned NOT NULL AUTO_INCREMENT,
...
 `ftype` tinyint(3) unsigned NOT NULL,
...
 PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;

[email protected]> select count(*) from t1;
+----------+
| count(*) |
+----------+
| 994584 |
+----------+

[email protected]> EXPLAIN SELECT * FROM `t1` WHERE ftype=1 ORDER BY id DESC LIMIT 500, 10\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: t1
 type: index
possible_keys: NULL
 key: PRIMARY
 key_len: 4
 ref: NULL
   rows: 510
   Extra: Using where

[email protected]> EXPLAIN SELECT * FROM `t1` WHERE ftype=1 ORDER BY id DESC LIMIT 935500, 10\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: t1
 type: index
possible_keys: NULL
 key: PRIMARY
 key_len: 4
 ref: NULL
   rows: 935510
   Extra: Using where

可以看到,虽然通过主键索引进行扫描了,但第二个SQL需要扫描的记录数太大了,而且需要先扫描约935510条记录,然后再根据排序结果取10条记录,这肯定是非常慢了。 针对这种情况,我们的优化思路就比较清晰了,有两点:

1、尽可能从索引中直接获取数据,避免或减少直接扫描行数据的频率
2、尽可能减少扫描的记录数,也就是先确定起始的范围,再往后取N条记录即可

据此,我们有两种相应的改写方法:子查询、表连接,即下面这样的:

#采用子查询的方式优化,在子查询里先从索引获取到最大id,然后倒序排,再取10行结果集
#注意这里采用了2次倒序排,因此在取LIMIT的start值时,比原来的值加了10,即935510,否则结果将和原来的不一致
[email protected]> EXPLAIN SELECT * FROM (SELECT * FROM `t1` WHERE id > ( SELECT id FROM `t1` WHERE ftype=1 ORDER BY id DESC LIMIT 935510, 1) LIMIT 10) t ORDER BY id DESC\G
*************************** 1. row ***************************
 id: 1
 select_type: PRIMARY
 table: <derived2>
 type: ALL
possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: 10
 Extra: Using filesort
*************************** 2. row ***************************
 id: 2
 select_type: DERIVED
 table: t1
 type: ALL
possible_keys: PRIMARY
 key: NULL
 key_len: NULL
 ref: NULL
 rows: 973192
 Extra: Using where
*************************** 3. row ***************************
 id: 3
 select_type: SUBQUERY
 table: t1
 type: index
possible_keys: NULL
 key: PRIMARY
 key_len: 4
 ref: NULL
 rows: 935511
 Extra: Using where

#采用INNER JOIN优化,JOIN子句里也优先从索引获取ID列表,然后直接关联查询获得最终结果,这里不需要加10
[email protected]> EXPLAIN SELECT * FROM `t1` INNER JOIN ( SELECT id FROM `t1` WHERE ftype=1 ORDER BY id DESC LIMIT 935500,10) t2 USING (id)\G
*************************** 1. row ***************************
 id: 1
 select_type: PRIMARY
 table: <derived2>
 type: ALL
possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: 935510
 Extra: NULL
*************************** 2. row ***************************
 id: 1
 select_type: PRIMARY
 table: t1
 type: eq_ref
possible_keys: PRIMARY
 key: PRIMARY
 key_len: 4
 ref: t2.id
 rows: 1
 Extra: NULL
*************************** 3. row ***************************
 id: 2
 select_type: DERIVED
 table: t1
 type: index
possible_keys: NULL
 key: PRIMARY
 key_len: 4
 ref: NULL
 rows: 973192
 Extra: Using where

然后我们来对比下这2个优化后的新SQL执行时间:

[email protected]> SELECT * FROM (SELECT * FROM `t1` WHERE id > ( SELECT id FROM `t1` WHERE ftype=1 ORDER BY id DESC LIMIT 935510, 1) LIMIT 10) T ORDER BY id DESC;
...
rows in set (1.86 sec)
#采用子查询优化,从profiling的结果来看,相比原来的那个SQL快了:28.2%

[email protected]> SELECT * FROM `t1` INNER JOIN ( SELECT id FROM `t1` WHERE ftype=1 ORDER BY id DESC LIMIT 935500,10) t2 USING (id);
...
10 rows in set (1.83 sec)
#采用INNER JOIN优化,从profiling的结果来看,相比原来的那个SQL快了:30.8%

我们再来看一个不带过滤条件的分页SQL对比:

#原始SQL
[email protected]> EXPLAIN SELECT * FROM `t1` ORDER BY id DESC LIMIT 935500, 10\G
*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: t1
         type: index
possible_keys: NULL
          key: PRIMARY
      key_len: 4
            ref: NULL
         rows: 935510
        Extra: NULL

[email protected]> SELECT * FROM `t1` ORDER BY id DESC LIMIT 935500, 10;
...
10 rows in set (2.22 sec)

#采用子查询优化
[email protected]> EXPLAIN SELECT * FROM (SELECT * FROM `t1` WHERE id > ( SELECT id FROM `t1` ORDER BY id DESC LIMIT 935510, 1) LIMIT 10) t ORDER BY id DESC;
*************************** 1. row ***************************
           id: 1
  select_type: PRIMARY
        table: <derived2>
         type: ALL
possible_keys: NULL
          key: NULL
      key_len: NULL
          ref: NULL
         rows: 10
        Extra: Using filesort
*************************** 2. row ***************************
           id: 2
  select_type: DERIVED
        table: t1
           type: ALL
possible_keys: PRIMARY
          key: NULL
      key_len: NULL
          ref: NULL
         rows: 973192
        Extra: Using where
*************************** 3. row ***************************
           id: 3
  select_type: SUBQUERY
        table: t1
         type: index
possible_keys: NULL
          key: PRIMARY
      key_len: 4
          ref: NULL
         rows: 935511
          Extra: Using index

[email protected]> SELECT * FROM (SELECT * FROM `t1` WHERE id > ( SELECT id FROM `t1` ORDER BY id DESC LIMIT 935510, 1) LIMIT 10) t ORDER BY id DESC;
…
10 rows in set (2.01 sec)
#采用子查询优化,从profiling的结果来看,相比原来的那个SQL快了:10.6%


#采用INNER JOIN优化
[email protected]> EXPLAIN SELECT * FROM `t1` INNER JOIN ( SELECT id FROM `t1`ORDER BY id DESC LIMIT 935500,10) t2 USING (id)\G
*************************** 1. row ***************************
           id: 1
  select_type: PRIMARY
        table: 
         type: ALL
possible_keys: NULL
          key: NULL
      key_len: NULL
          ref: NULL
         rows: 935510
        Extra: NULL
*************************** 2. row ***************************
           id: 1
  select_type: PRIMARY
        table: t1
           type: eq_ref
possible_keys: PRIMARY
          key: PRIMARY
      key_len: 4
          ref: t1.id
         rows: 1
        Extra: NULL
*************************** 3. row ***************************
           id: 2
  select_type: DERIVED
        table: t1
         type: index
possible_keys: NULL
          key: PRIMARY
      key_len: 4
          ref: NULL
         rows: 973192
          Extra: Using index

[email protected]> SELECT * FROM `t1` INNER JOIN ( SELECT id FROM `t1`ORDER BY id DESC LIMIT 935500,10) t2 USING (id);
…
10 rows in set (1.70 sec)
#采用INNER JOIN优化,从profiling的结果来看,相比原来的那个SQL快了:30.2%

至此,我们看到采用子查询或者INNER JOIN进行优化后,都有大幅度的提升,这个方法也同样适用于较小的分页,虽然LIMIT开始的 start 位置小了很多,SQL执行时间也快了很多,但采用这种方法后,带WHERE条件的分页分别能提高查询效率:24.9%、156.5%,不带WHERE条件的分页分别提高查询效率:554.5%、11.7%,各位可以自行进行测试验证。单从提升比例说,还是挺可观的,确保这些优化方法可以适用于各种分页模式,就可以从一开始就是用。 我们来看下各种场景相应的提升比例是多少:

大分页,带WHERE 大分页,不带WHERE 大分页平均提升比例 小分页,带WHERE 小分页,不带WHERE 总体平均提升比例
子查询优化 28.20% 10.60% 19.40% 24.90% 554.40% 154.53%
INNER JOIN优化 30.80% 30.20% 30.50% 156.50% 11.70% 57.30%

结论:这样看就和明显了,尤其是针对大分页的情况,因此我们优先推荐使用INNER JOIN方式优化分页算法。

上述每次测试都重启mysqld实例,并且加了SQL_NO_CACHE,以保证每次都是直接数据文件或索引文件中读取。如果数据经过预热后,查询效率会一定程度提升,但但上述相应的效率提升比例还是基本一致的。

2014/07/28后记更新:

其实如果是不带任何条件的分页,就没必要用这么麻烦的方法了,可以采用对主键采用范围检索的方法,例如参考这篇: Advance for MySQL Pagination

转自: http://imysql.com/2014/07/26/mysql-optimization-case-paging-optimize.shtml

相关 [mysql 优化 系列] 推荐:

[MySQL优化案例]系列 — 分页优化

- - 学习笔记
通常,我们会采用ORDER BY LIMIT start, offset 的方式来进行分页查询. 或者像下面这个不带任何条件的分页SQL:. 一般而言,分页SQL的耗时随着 start 值的增加而急剧增加,我们来看下面这2个不同起始值的分页SQL执行耗时:. 可以看到,随着分页数量的增加,SQL查询耗时也有数十倍增加,显然不科学.

[MySQL优化案例]系列 — slave延迟很大优化方法

- - MySQL中文网
备注:插图来自网络搜索,如果觉得不当还请及时告知 :). 一般而言,slave相对master延迟较大,其根本原因就是slave上的复制线程没办法真正做到并发. 简单说,在master上是并发模式(以InnoDB引擎为主)完成事务提交的,而在slave上,复制线程只有一个sql thread用于binlog的apply,所以难怪slave在高并发时会远落后master.

[MySQL优化案例]系列 — 优化InnoDB表BLOB列的存储效率

- - MySQL中文网
首先,介绍下关于InnoDB引擎存储格式的几个要点:. 1、InnoDB可以选择使用共享表空间或者是独立表空间方式, 建议使用独立表空间,便于管理、维护. 启用 innodb_file_per_table 选项,5.5以后可以在线动态修改生效,并且执行 ALTER TABLE xx ENGINE = InnoDB 将现有表转成独立表空间,早于5.5的版本,修改完这个选项后,需要重启才能生效;.

mysql优化

- - 数据库 - ITeye博客
公司网站访问量越来越大,MySQL自然成为瓶颈,因此最近我一直在研究 MySQL  的优化,第一步自然想到的是 MySQL 系统参数的优化,作为一个访问量很大的网站(日20万人次以上)的数据库系统,不可能指望 MySQL  默认的系统参数能够让 MySQL运行得非常顺畅. 在Apache, PHP,  MySQL的体系架构中,MySQL对于性能的影响最大,也是关键的核心部分.

mysql优化

- - 数据库 - ITeye博客
      1.通过 show (session 或者 global) status 来查看( 当前连接 或者 数据库上次开机以来 )的服务器状态信息,默认是session.         例如:show status like '%com_%' : com_XXX表示XXX语句执行的总次数,这总次数是针对所有引擎的总和.

优化系列 | 实例解析MySQL性能瓶颈排查定位

- - iMySQL
从一个现场说起,全程解析如何定位性能瓶颈. 收到线上某业务后端的MySQL实例负载比较高的告警信息,于是登入服务器检查确认. 首先我们进行OS层面的检查确认. 登入服务器后,我们的目的是首先要确认当前到底是哪些进程引起的负载高,以及这些进程卡在什么地方,瓶颈是什么. 通常来说, 服务器上最容易成为瓶颈的是磁盘I/O子系统,因为它的读写速度通常是最慢的.

MySQL性能优化

- sun - IT程序员面试网
在笔试面试中,尤其是像百度,淘宝这些数据量非常大,而且用LAMP架构的公司,数据库优化方面就显得特别重要了. 此外,除了数据库索引之外,在LAMP结果如此流行的今天,数据库(尤其是MySQL)性能优化也是海量数据处理的一个热点. 下面就结合自己的经验,聊一聊MySQL数据库优化的几个方面. 首先,在数据库设计的时候,要能够充分的利用索引带来的性能提升,至于如何建立索引,建立什么样的索引,在哪些字段上建立索引,上面已经讲的很清楚了,这里不在赘述.

mysql 引擎优化

- - CSDN博客推荐文章
MySQL数 据库引擎取决于MySQL在安装的时候是如何被编译的. 要添加一个新的引擎,就必须重新编译MYSQL. 在缺省情况下,MYSQL支持三个引擎:ISAM、MYISAM和HEAP. 另外两种类型INNODB和BERKLEY(BDB),也常常可以使用. 如果技术高超,还可以使用MySQL++ API自己做一个引擎.

mysql参数优化

- - CSDN博客推荐文章
### 用来存放InnoDB的内部目录,对于大数据设置16M足够用. ### InnoDB 缓存总大小设置,一般设置为系统内存的70%-80%. ### 指定所有InnoDB数据文件的路径和大小分配. ### 文件读写io数设置:. ### InnoDB内核的并发线程数设置. ### 设置日值的大小.

Zabbix 的 MySQL 优化

- - SegmentFault 最新的文章
为 Zabbix 优化 MySQL. 标签(空格分隔): Zabbix MySQL Optimizing 优化. Aurimas Mikalauskas,原文是. Zabbix 和 MySQL. 在大型的 Zabbix 环境中,遇到的挑战大部分是 MySQL 以及更具体的说是 MySQL 磁盘 IO.