JobTracker作业启动过程分析
在Hadoop中,启动作业运行的方式有很多,可以用命令行格式把打包好后的作业提交还可以,用Hadoop的插件进行应用开发,在这么多的方式中,都会必经过一个流程,作业会以JobInProgress的形式提交到JobTracker中。什么叫JobTracker呢,也许有些人了解Hadoop只知道他的MapReduce计算模型,那个过程只是其中的Task执行的一个具体过程,比较微观上的流程,而JobTrack是一个比较宏观上的东西。涉及到作业的提交的过程。 Hadoop遵循的是Master/Slave的架构,也就是主从关系,对应的就是JobTracker/TaskTracker,前者负责资源管理和作业调度,后者主要负责执行由前者分配过来的作业。这样说的话,简单明了。JobTracker里面的执行的过程很多,那就得从开头开始分析,也就是作业最最开始的提交流程开始。后面的分析我会结合MapReduce的代码穿插式的分析,便于大家理解。
其实在作业的提交状态之前,还不会到达JobTacker阶段的,首先是到了MapReduce中一个叫JobClient的类中。也就是说,比如用户通过bin/hadoop jar xxx.jar把打包的jar包上传到系统中时,首先会触发的就是JobClient.。
public RunningJob submitJob(String jobFile) throws FileNotFoundException, InvalidJobConfException, IOException { // Load in the submitted job details JobConf job = new JobConf(jobFile); return submitJob(job); }之后人家根据配置文件接着调用submitJob()方法
public RunningJob submitJob(JobConf job) throws FileNotFoundException, IOException { try { //又继续调用的是submitJobInternal方法 return submitJobInternal(job); } catch (InterruptedException ie) { throw new IOException("interrupted", ie); } catch (ClassNotFoundException cnfe) { throw new IOException("class not found", cnfe); } }来到了submitJobInternal的主要方法了
... jobCopy = (JobConf)context.getConfiguration(); // Create the splits for the job 为作业创建输入信息 FileSystem fs = submitJobDir.getFileSystem(jobCopy); LOG.debug("Creating splits at " + fs.makeQualified(submitJobDir)); int maps = writeSplits(context, submitJobDir); jobCopy.setNumMapTasks(maps); // write "queue admins of the queue to which job is being submitted" // to job file. String queue = jobCopy.getQueueName(); AccessControlList acl = jobSubmitClient.getQueueAdmins(queue); jobCopy.set(QueueManager.toFullPropertyName(queue, QueueACL.ADMINISTER_JOBS.getAclName()), acl.getACLString()); // Write job file to JobTracker's fs FSDataOutputStream out = FileSystem.create(fs, submitJobFile, new FsPermission(JobSubmissionFiles.JOB_FILE_PERMISSION)); try { jobCopy.writeXml(out); } finally { out.close(); } // // Now, actually submit the job (using the submit name) // printTokens(jobId, jobCopy.getCredentials()); //所有信息配置完毕,作业的初始化工作完成,最后将通过RPC方式正式提交作业 status = jobSubmitClient.submitJob( jobId, submitJobDir.toString(), jobCopy.getCredentials()); JobProfile prof = jobSubmitClient.getJobProfile(jobId);在这里他会执行一些作业提交之前需要进行的初始化工作,最后会RPC调用远程的提交方法。下面是一个时序图
至此我们知道,我们作业已经从本地提交出去了,后面的事情就是JobTracker的事情了,这个时候我们直接会触发的是JobTacker的addJob()方法。
private synchronized JobStatus addJob(JobID jobId, JobInProgress job) throws IOException { totalSubmissions++; synchronized (jobs) { synchronized (taskScheduler) { jobs.put(job.getProfile().getJobID(), job); //观察者模式,会触发每个监听器的方法 for (JobInProgressListener listener : jobInProgressListeners) { listener.jobAdded(job); } } } myInstrumentation.submitJob(job.getJobConf(), jobId); job.getQueueMetrics().submitJob(job.getJobConf(), jobId); LOG.info("Job " + jobId + " added successfully for user '" + job.getJobConf().getUser() + "' to queue '" + job.getJobConf().getQueueName() + "'"); AuditLogger.logSuccess(job.getUser(), Operation.SUBMIT_JOB.name(), jobId.toString()); return job.getStatus(); }在这里设置了很多监听器,监听作业的一个情况。那么分析到这里,我们当然也也要顺便学习一下JobTracker的是怎么运行开始的呢。其实JobTracker是一个后台服务程序,他有自己的main方法入口执行地址。上面的英文是这么对此进行描述的:
/** * Start the JobTracker process. This is used only for debugging. As a rule, * JobTracker should be run as part of the DFS Namenode process. * JobTracker也是一个后台进程,伴随NameNode进程启动进行,main方法是他的执行入口地址 */ public static void main(String argv[] ) throws IOException, InterruptedException上面说的很明白,作为NameNode的附属进程操作,NameNode跟JonTracker一样,全局只有一个,也是Master/Slave的关系对应的是DataNode数据结点。这些是HDFS相关的东西了。
public static void main(String argv[] ) throws IOException, InterruptedException { StringUtils.startupShutdownMessage(JobTracker.class, argv, LOG); try { if(argv.length == 0) { //调用startTracker方法开始启动JobTracker JobTracker tracker = startTracker(new JobConf()); //JobTracker初始化完毕,开启里面的各项线程服务 tracker.offerService(); } else { if ("-dumpConfiguration".equals(argv[0]) && argv.length == 1) { dumpConfiguration(new PrintWriter(System.out)); } else { System.out.println("usage: JobTracker [-dumpConfiguration]"); System.exit(-1); } } } catch (Throwable e) { LOG.fatal(StringUtils.stringifyException(e)); System.exit(-1); } }里面2个主要方法,初始化JobTracker,第二个开启服务方法。首先看startTracker(),最后会执行到new JobTracker()构造函数里面去了:
JobTracker(final JobConf conf, String identifier, Clock clock, QueueManager qm) throws IOException, InterruptedException { ..... //初始化安全相关操作 secretManager = new DelegationTokenSecretManager(secretKeyInterval, tokenMaxLifetime, tokenRenewInterval, DELEGATION_TOKEN_GC_INTERVAL); secretManager.startThreads(); ...... // Read the hosts/exclude files to restrict access to the jobtracker. this.hostsReader = new HostsFileReader(conf.get("mapred.hosts", ""), conf.get("mapred.hosts.exclude", "")); //初始化ACL访问控制列表 aclsManager = new ACLsManager(conf, new JobACLsManager(conf), queueManager); LOG.info("Starting jobtracker with owner as " + getMROwner().getShortUserName()); // Create the scheduler Class<? extends TaskScheduler> schedulerClass = conf.getClass("mapred.jobtracker.taskScheduler", JobQueueTaskScheduler.class, TaskScheduler.class); //初始化Task任务调度器 taskScheduler = (TaskScheduler) ReflectionUtils.newInstance(schedulerClass, conf); // Set service-level authorization security policy if (conf.getBoolean( ServiceAuthorizationManager.SERVICE_AUTHORIZATION_CONFIG, false)) { ServiceAuthorizationManager.refresh(conf, new MapReducePolicyProvider()); } int handlerCount = conf.getInt("mapred.job.tracker.handler.count", 10); this.interTrackerServer = RPC.getServer(this, addr.getHostName(), addr.getPort(), handlerCount, false, conf, secretManager); if (LOG.isDebugEnabled()) { Properties p = System.getProperties(); for (Iterator it = p.keySet().iterator(); it.hasNext();) { String key = (String) it.next(); String val = p.getProperty(key); LOG.debug("Property '" + key + "' is " + val); } }里面主要干了这么几件事:
1.初始化ACL访问控制列表数据
2.创建TaskSchedule任务调度器
3.得到DPC Server。
4.还有其他一些零零碎碎的操作....
然后第2个方法offService(),主要开启了各项服务;
public void offerService() throws InterruptedException, IOException { // Prepare for recovery. This is done irrespective of the status of restart // flag. while (true) { try { recoveryManager.updateRestartCount(); break; } catch (IOException ioe) { LOG.warn("Failed to initialize recovery manager. ", ioe); // wait for some time Thread.sleep(FS_ACCESS_RETRY_PERIOD); LOG.warn("Retrying..."); } } taskScheduler.start(); ..... this.expireTrackersThread = new Thread(this.expireTrackers, "expireTrackers"); //启动该线程的主要作用是发现和清理死掉的任务 this.expireTrackersThread.start(); this.retireJobsThread = new Thread(this.retireJobs, "retireJobs"); //启动该线程的作用是清理长时间驻留在内存中且已经执行完的任务 this.retireJobsThread.start(); expireLaunchingTaskThread.start(); if (completedJobStatusStore.isActive()) { completedJobsStoreThread = new Thread(completedJobStatusStore, "completedjobsStore-housekeeper"); //该线程的作用是把已经运行完成的任务的信息保存到HDFS中,以便后续的查询 completedJobsStoreThread.start(); } // start the inter-tracker server once the jt is ready this.interTrackerServer.start(); synchronized (this) { state = State.RUNNING; } LOG.info("Starting RUNNING"); this.interTrackerServer.join(); LOG.info("Stopped interTrackerServer"); }主要3大线程在这个方法里被开开启了,expireTrackersThread,retireJobsThread,completedJobsStoreThread,还有1个RPC服务的开启,interTrackerServer.start(),还有细节的操作就不列举出来了。好了JobTraker的close方法的流程刚刚好和以上的操作相反,之前启动过的线程统统关掉。
void close() throws IOException { //服务停止 if (this.infoServer != null) { LOG.info("Stopping infoServer"); try { this.infoServer.stop(); } catch (Exception ex) { LOG.warn("Exception shutting down JobTracker", ex); } } if (this.interTrackerServer != null) { LOG.info("Stopping interTrackerServer"); this.interTrackerServer.stop(); } if (this.expireTrackersThread != null && this.expireTrackersThread.isAlive()) { LOG.info("Stopping expireTrackers"); //执行线程中断操作 this.expireTrackersThread.interrupt(); try { //等待线程执行完毕再执行后面的操作 this.expireTrackersThread.join(); } catch (InterruptedException ex) { ex.printStackTrace(); } } if (this.retireJobsThread != null && this.retireJobsThread.isAlive()) { LOG.info("Stopping retirer"); this.retireJobsThread.interrupt(); try { this.retireJobsThread.join(); } catch (InterruptedException ex) { ex.printStackTrace(); } } if (taskScheduler != null) { //调度器的方法终止 taskScheduler.terminate(); } if (this.expireLaunchingTaskThread != null && this.expireLaunchingTaskThread.isAlive()) { LOG.info("Stopping expireLaunchingTasks"); this.expireLaunchingTaskThread.interrupt(); try { this.expireLaunchingTaskThread.join(); } catch (InterruptedException ex) { ex.printStackTrace(); } } if (this.completedJobsStoreThread != null && this.completedJobsStoreThread.isAlive()) { LOG.info("Stopping completedJobsStore thread"); this.completedJobsStoreThread.interrupt(); try { this.completedJobsStoreThread.join(); } catch (InterruptedException ex) { ex.printStackTrace(); } } if (jobHistoryServer != null) { LOG.info("Stopping job history server"); try { jobHistoryServer.shutdown(); } catch (Exception ex) { LOG.warn("Exception shutting down Job History server", ex); } } DelegationTokenRenewal.close(); LOG.info("stopped all jobtracker services"); return; }至此,JobTracker的执行过程总算有了一个了解了吧,不算太难。后面的过程分析。JobTracker是如何把任务进行分解和分配的,从宏观上去理解Hadoop的工作原理。