关于海量数据处理分析的经验总结

标签: 大数据分析 | 发表时间:2015-05-14 18:17 | 作者:猫儿
出处:http://www.techxue.com/forum.php

笔者在实际工作中,有幸接触到海量的数据处理问题,对其进行处理是一项艰巨而复杂的任务。原因有以下几个方面:

一、数据量过大,数据中什么情况都可能存在。如果说有10条数据,那么大不了每条去逐一检查,人为处理,如果有上百条数据,也可以考虑,如果数据上到千万级别,甚至过亿,那不是手工能解决的了,必须通过工具或者程序进行处理,尤其海量的数据中,什么情况都可能存在,例如,数据中某处格式出了问题,尤其在程序处理时,前面还能正常处理,突然到了某个地方问题出现了,程序终止了。

二、软硬件要求高,系统资源占用率高。对海量的数据进行处理,除了好的方法,最重要的就是合理使用工具,合理分配系统资源。一般情况,如果处理的数据过TB级,小型机是要考虑的,普通的机子如果有好的方法可以考虑,不过也必须加大CPU和内存,就象面对着千军万马,光有勇气没有一兵一卒是很难取胜的。

三、要求很高的处理方法和技巧。这也是本文的写作目的所在,好的处理方法是一位工程师长期工作经验的积累,也是个人的经验的总结。没有通用的处理方法,但有通用的原理和规则。

那么处理海量数据有哪些经验和技巧呢,我把我所知道的罗列一下,以供大家参考:

一、选用优秀的数据库工具

现在的数据库工具厂家比较多,对海量数据的处理对所使用的数据库工具要求比较高,一般使用Oracle或者DB2,微软公司SQL Server 2005性能也不错。另外在BI领域:数据库,数据仓库,多维数据库,数据挖掘等相关工具也要进行选择,像好的ETL工具和好的OLAP工具都十分必要,例如Informatic,Eassbase等。笔者在实际数据分析项目中,对每天6000万条的日志数据进行处理,使用SQL Server 2000需要花费6小时,而使用SQL Server 2005则只需要花费3小时。

二、编写优良的程序代码

处理数据离不开优秀的程序代码,尤其在进行复杂数据处理时,必须使用程序。好的程序代码对数据的处理至关重要,这不仅仅是数据处理准确度的问题,更是数据处理效率的问题。良好的程序代码应该包含好的算法,包含好的处理流程,包含好的效率,包含好的异常处理机制等。

三、对海量数据进行分区操作

对海量数据进行分区操作十分必要,例如针对按年份存取的数据,我们可以按年进行分区,不同的数据库有不同的分区方式,不过处理机制大体相同。例如SQL Server的数据库分区是将不同的数据存于不同的文件组下,而不同的文件组存于不同的磁盘分区下,这样将数据分散开,减小磁盘I/O,减小了系统负荷,而且还可以将日志,索引等放于不同的分区下。

四、建立广泛的索引

对海量的数据处理,对大表建立索引是必行的,建立索引要考虑到具体情况,例如针对大表的分组、排序等字段,都要建立相应索引,一般还可以建立复合索引,对经常插入的表则建立索引时要小心,笔者在处理数据时,曾经在一个ETL流程中,当插入表时,首先删除索引,然后插入完毕,建立索引,并实施聚合操作,聚合完成后,再次插入前还是删除索引,所以索引要用到好的时机,索引的填充因子和聚集、非聚集索引都要考虑。

五、建立缓存机制

当数据量增加时,一般的处理工具都要考虑到缓存问题。缓存大小设置的好差也关系到数据处理的成败,例如,笔者在处理2亿条数据聚合操作时,缓存设置为100000条/Buffer,这对于这个级别的数据量是可行的。

六、加大虚拟内存

如果系统资源有限,内存提示不足,则可以靠增加虚拟内存来解决。笔者在实际项目中曾经遇到针对18亿条的数据进行处理,内存为1GB,1个P4 2.4G的CPU,对这么大的数据量进行聚合操作是有问题的,提示内存不足,那么采用了加大虚拟内存的方法来解决,在6块磁盘分区上分别建立了6个4096M的磁盘分区,用于虚拟内存,这样虚拟的内存则增加为 4096*6 + 1024 = 25600 M,解决了数据处理中的内存不足问题。

七、分批处理

海量数据处理难因为数据量大,那么解决海量数据处理难的问题其中一个技巧是减少数据量。可以对海量数据分批处理,然后处理后的数据再进行合并操作,这样逐个击破,有利于小数据量的处理,不至于面对大数据量带来的问题,不过这种方法也要因时因势进行,如果不允许拆分数据,还需要另想办法。不过一般的数据按天、按月、按年等存储的,都可以采用先分后合的方法,对数据进行分开处理。

八、使用临时表和中间表

数据量增加时,处理中要考虑提前汇总。这样做的目的是化整为零,大表变小表,分块处理完成后,再利用一定的规则进行合并,处理过程中的临时表的使用和中间结果的保存都非常重要,如果对于超海量的数据,大表处理不了,只能拆分为多个小表。如果处理过程中需要多步汇总操作,可按汇总步骤一步步来,不要一条语句完成,一口气吃掉一个胖子。

九、优化查询SQL语句

在对海量数据进行查询处理过程中,查询的SQL语句的性能对查询效率的影响是非常大的,编写高效优良的SQL脚本和存储过程是数据库工作人员的职责,也是检验数据库工作人员水平的一个标准,在对SQL语句的编写过程中,例如减少关联,少用或不用游标,设计好高效的数据库表结构等都十分必要。笔者在工作中试着对1亿行的数据使用游标,运行3个小时没有出结果,这是一定要改用程序处理了。

十、使用文本格式进行处理

对一般的数据处理可以使用数据库,如果对复杂的数据处理,必须借助程序,那么在程序操作数据库和程序操作文本之间选择,是一定要选择程序操作文本的,原因为:程序操作文本速度快;对文本进行处理不容易出错;文本的存储不受限制等。例如一般的海量的网络日志都是文本格式或者csv格式(文本格式),对它进行处理牵扯到数据清洗,是要利用程序进行处理的,而不建议导入数据库再做清洗。

相关 [于海 量数 分析] 推荐:

关于海量数据处理分析的经验总结

- - 互联网分析沙龙
笔者在实际工作中,有幸接触到海量的数据处理问题,对其进行处理是一项艰巨而复杂的任务. 一、数据量过大,数据中什么情况都可能存在. 如果说有10条数据,那么大不了每条去逐一检查,人为处理,如果有上百条数据,也可以考虑,如果数据上到千万级别,甚至过亿,那不是手工能解决的了,必须通过工具或者程序进行处理,尤其海量的数据中,什么情况都可能存在,例如,数据中某处格式出了问题,尤其在程序处理时,前面还能正常处理,突然到了某个地方问题出现了,程序终止了.

PHP查询MySQL大量数据的内存占用分析

- Avenger - OurMySQL
这篇文章主要是从原理, 手册和源码分析在PHP中查询MySQL返回大量结果时, 内存占用的问题, 同时对使用MySQL C API也有涉及.. 昨天, 有同事在PHP讨论群里提到, 他做的一个项目由于MySQL查询返回的结果太多(达10万条), 从而导致PHP内存不够用. 所以, 他问, 在执行下面的代码遍历返回的MySQL结果之前, 数据是否已经在内存中了.

海量数据分析背后的新语义法

- Jin Huang - RSS咨询--麻省理工《科技创业》中文网
可以利用一个新型的混合系统来分析大量的数据,而该混合系统就是用在图形数据库中进行语义分析和分解的. 想象一下如何才能分析维基百科里所有的英语词目. 并且假设现在你手里得到的信息是维基百科的20倍,那你又该如何分析这些数据. 这就是一直以来科学家处理千兆字节数据集时所面临的大挑战. 美国西太平洋国家实验室、桑迪亚国家实验室和Cray公司的科学家开发出了一款应用,可以承担起分析如此大量数据的任务.

新一代海量数据架构分析:NoHadoop

- - 服务器运维与网站架构|Linux运维|互联网研究
在经历了长达25年的统治地位后,关系型数据库正面临越来越火的“NoSQL”挑战,而挑战者是以Hadoop为代表的分布式计算开源架构. 可以看到,越来越多的消息表明,不管NoSQL是被解释为“No SQL”还是“Not Only SQL”,如果你面临海量数据的挑战,那么你最应该选的海量数据架构是Hadoop.

海量数据处理:经典实例分析

- - CSDN博客综合推荐文章
有关海量数据处理的问题,主要有以下3类:top K问题、重复问题、排序问题. 例子有1亿个浮点数找出其中最大的10000个. 在大规模数据处理中,经常会遇到的一类问题:在海量数据中找出出现频率最高的前K个数,或者从海量数据中找出最大的前K个数,这类问题通常被称为top K问题. 例如,在搜索引擎中,统计搜索最热门的10个查询词;在歌曲库中统计下载率最高的前10首歌等.

竞品分析

- 章明 - 互联网的那点事
关于竞品分析,之前天行(@天行Aeros)有篇文章《设计公式:简单有效的竞品分析》已经进行了介绍,本文在该文章的基础之上再进行一些分享,希望对大家有用. 竞品分析(Competitive Analysis)一词最早源于经济学领域. 市场营销和战略管理方面的竞品分析是指对现有的或潜在的竞争产品的优势和劣势进行评价.

Excel-对比图分析(差异分析)

- - CSDN博客数据库推荐文章
本文摘自作者《网站数据分析:数据驱动的网站管理、优化和运营 》: http://item.jd.com/11295690.html. 对比分析就是将两个或两个以上的数据进行比较,分析它们之间的差异,从而揭示这些数据所代表事物的发展变化情况和规律. 通过对比,可以很直观地看出事物在某方面的差距,并且可以准确、量化地表示出差距的多少.

Netty代码分析

- LightingMan - 淘宝JAVA中间件团队博客
Netty提供异步的、事件驱动的网络应用程序框架和工具,用以快速开发高性能、高可靠性的网络服务器和客户端程序[官方定义],整体来看其包含了以下内容:1.提供了丰富的协议编解码支持,2.实现自有的buffer系统,减少复制所带来的消耗,3.整套channel的实现,4.基于事件的过程流转以及完整的网络事件响应与扩展,5.丰富的example.