Java程序员必知的8大排序算法

标签: java 排序 算法 | 发表时间:2015-10-01 09:56 | 作者:Eric
出处:http://www.javaranger.com

8种排序之间的关系

sort
直接插入排序

(1)基本思想:在要排序的一组数中,假设前面(n-1)[n>=2] 个数已经是排
好顺序的,现在要把第n个数插到前面的有序数中,使得这n个数
也是排好顺序的。如此反复循环,直到全部排好顺序。
(2)实例

直接插入排序

(3)用java实现

public class insertSort {
    public insertSort(){
        int a[]={49,38,65,97,76,13,27,49,78,34,12,64,5,4,62,99,98,54,56,17,18,23,34,15,35,25,53,51};
        int temp=0;
        for(int i=1;i<a.length;i++){             int j=i-1;             temp=a[i];             for(;j>=0&&temp<a[j];j--){
                a[j+1]=a[j];                       //将大于temp的值整体后移一个单位
            }
            a[j+1]=temp;
        }
        for(int i=0;i<a.length;i++)
            System.out.println(a[i]);
    }
}

希尔排序(最小增量排序)

(1)基本思想:算法先将要排序的一组数按某个增量d(n/2,n为要排序数的个数)分成若干组,每组中记录的下标相差d.对每组中全部元素进行直接插入排序,然后再用一个较小的增量(d/2)对它进行分组,在每组中再进行直接插入排序。当增量减到1时,进行直接插入排序后,排序完成。
(2)实例:

希尔排序

(3)用java实现

 

public class shellSort {
    public shellSort() {
        int a[] = { 1, 54, 6, 3, 78, 34, 12, 45, 56, 100 };
        double d1 = a.length;
        int temp = 0;
        while (true) {
            d1 = Math.ceil(d1 / 2);
            int d = (int) d1;
            for (int x = 0; x < d; x++) {
                for (int i = x + d; i < a.length; i += d) {
                    int j = i - d;
                    temp = a[i];
                    for (; j >= 0 && temp < a[j]; j -= d) {
                        a[j + d] = a[j];
                    }
                    a[j + d] = temp;
                }
            }
            if (d == 1)
                break;
        }
        for (int i = 0; i < a.length; i++)
            System.out.println(a[i]);
    }
}

简单选择排序

(1)基本思想:在要排序的一组数中,选出最小的一个数与第一个位置的数交换;
然后在剩下的数当中再找最小的与第二个位置的数交换,如此循环到倒数第二个数和最后一个数比较为止。
(2)实例:

简单选择排序
(3)用java实现

public class selectSort {
    public selectSort() {
        int a[] = { 1, 54, 6, 3, 78, 34, 12, 45 };
        int position = 0;
        for (int i = 0; i < a.length; i++) {

            int j = i + 1;
            position = i;
            int temp = a[i];
            for (; j < a.length; j++) {
                if (a[j] < temp) {
                    temp = a[j];
                    position = j;
                }
            }
            a[position] = a[i];
            a[i] = temp;
        }
        for (int i = 0; i < a.length; i++)
            System.out.println(a[i]);
    }
}

堆排序

(1)基本思想:堆排序是一种树形选择排序,是对直接选择排序的有效改进。
堆的定义如下:具有n个元素的序列(h1,h2,…,hn),当且仅当满足(hi>=h2i,hi>=2i+1)或(hi<=h2i,hi<=2i+1) (i=1,2,…,n/2)时称之为堆。在这里只讨论满足前者条件的堆。由堆的定义可以看出,堆顶元素(即第一个元素)必为最大项(大顶堆)。完全二叉树可以很直观地表示堆的结构。堆顶为根,其它为左子树、右子树。初始时把要排序的数的序列看作是一棵顺序存储的二叉树,调整它们的存储序,使之成为一个堆,这时堆的根节点的数最大。然后将根节点与堆的最后一个节点交换。然后对前面(n-1)个数重新调整使之成为堆。依此类推,直到只有两个节点的堆,并对它们作交换,最后得到有n个节点的有序序列。从算法描述来看,堆排序需要两个过程,一是建立堆,二是堆顶与堆的最后一个元素交换位置。所以堆排序有两个函数组成。一是建堆的渗透函数,二是反复调用渗透函数实现排序的函数。
(2)实例:
初始序列:46,79,56,38,40,84
建堆:

堆排序

交换,从堆中踢出最大数

堆排序-交换

堆排序-交换2

依次类推:最后堆中剩余的最后两个结点交换,踢出一个,排序完成。
(3)用java实现

import java.util.Arrays;

public class HeapSort {
    int a[] = { 49, 38, 65, 97, 76, 13, 27, 49, 78, 34, 12, 64, 5, 4, 62, 99, 98, 54, 56, 17, 18, 23, 34, 15, 35, 25,
            53, 51 };

    public HeapSort() {
        heapSort(a);
    }

    public void heapSort(int[] a) {
        System.out.println("开始排序");
        int arrayLength = a.length;
        // 循环建堆
        for (int i = 0; i < arrayLength - 1; i++) {
            // 建堆

            buildMaxHeap(a, arrayLength - 1 - i);
            // 交换堆顶和最后一个元素
            swap(a, 0, arrayLength - 1 - i);
            System.out.println(Arrays.toString(a));
        }
    }

    private void swap(int[] data, int i, int j) {
        // TODO Auto-generated method stub
        int tmp = data[i];
        data[i] = data[j];
        data[j] = tmp;
    }

    // 对data数组从0到lastIndex建大顶堆
    private void buildMaxHeap(int[] data, int lastIndex) {
        // TODO Auto-generated method stub
        // 从lastIndex处节点(最后一个节点)的父节点开始
        for (int i = (lastIndex - 1) / 2; i >= 0; i--) {
            // k保存正在判断的节点
            int k = i;
            // 如果当前k节点的子节点存在
            while (k * 2 + 1 <= lastIndex) {
                // k节点的左子节点的索引
                int biggerIndex = 2 * k + 1;
                // 如果biggerIndex小于lastIndex,即biggerIndex+1代表的k节点的右子节点存在
                if (biggerIndex < lastIndex) {
                    // 若果右子节点的值较大
                    if (data[biggerIndex] < data[biggerIndex + 1]) {
                        // biggerIndex总是记录较大子节点的索引
                        biggerIndex++;
                    }
                }
                // 如果k节点的值小于其较大的子节点的值
                if (data[k] < data[biggerIndex]) {
                    // 交换他们
                    swap(data, k, biggerIndex);
                    // 将biggerIndex赋予k,开始while循环的下一次循环,重新保证k节点的值大于其左右子节点的值
                    k = biggerIndex;
                } else {
                    break;
                }
            }
        }
    }
}

冒泡排序

(1)基本思想:在要排序的一组数中,对当前还未排好序的范围内的全部数,自上而下对相邻的两个数依次进行比较和调整,让较大的数往下沉,较小的往上冒。即:每当两相邻的数比较后发现它们的排序与排序要求相反时,就将它们互换。
(2)实例:

冒泡排序

(3)用java实现

public class bubbleSort {
    public bubbleSort() {
        int a[] = { 49, 38, 65, 97, 76, 13, 27, 49, 78, 34, 12, 64, 5, 4, 62, 99, 98, 54, 56, 17, 18, 23, 34, 15, 35,
                25, 53, 51 };
        int temp = 0;
        for (int i = 0; i < a.length - 1; i++) {
            for (int j = 0; j < a.length - 1 - i; j++) {
                if (a[j] > a[j + 1]) {
                    temp = a[j];
                    a[j] = a[j + 1];
                    a[j + 1] = temp;
                }
            }
        }
        for (int i = 0; i < a.length; i++)
            System.out.println(a[i]);
    }
}

快速排序

(1)基本思想:选择一个基准元素,通常选择第一个元素或者最后一个元素,通过一趟扫描,将待排序列分成两部分,一部分比基准元素小,一部分大于等于基准元素,此时基准元素在其排好序后的正确位置,然后再用同样的方法递归地排序划分的两部分。
(2)实例:

快速排序
(3)用java实现

public class quickSort {
    int a[] = { 49, 38, 65, 97, 76, 13, 27, 49, 78, 34, 12, 64, 5, 4, 62, 99, 98, 54, 56, 17, 18, 23, 34, 15, 35, 25,
            53, 51 };

    public quickSort() {
        quick(a);
        for (int i = 0; i < a.length; i++)
            System.out.println(a[i]);
    }

    public int getMiddle(int[] list, int low, int high) {
        int tmp = list[low]; // 数组的第一个作为中轴
        while (low < high) {
            while (low < high && list[high] >= tmp) {

                high--;
            }
            list[low] = list[high]; // 比中轴小的记录移到低端
            while (low < high && list[low] <= tmp) {
                low++;
            }
            list[high] = list[low]; // 比中轴大的记录移到高端
        }
        list[low] = tmp; // 中轴记录到尾
        return low; // 返回中轴的位置
    }

    public void _quickSort(int[] list, int low, int high) {
        if (low < high) {
            int middle = getMiddle(list, low, high); // 将list数组进行一分为二
            _quickSort(list, low, middle - 1); // 对低字表进行递归排序
            _quickSort(list, middle + 1, high); // 对高字表进行递归排序
        }
    }

    public void quick(int[] a2) {
        if (a2.length > 0) { // 查看数组是否为空
            _quickSort(a2, 0, a2.length - 1);
        }
    }
}

归并排序

(1)基本排序:归并(Merge)排序法是将两个(或两个以上)有序表合并成一个新的有序表,即把待排序序列分为若干个子序列,每个子序列是有序的。然后再把有序子序列合并为整体有序序列。
(2)实例:

归并排序

(3)用java实现

import java.util.Arrays;

public class mergingSort {
    int a[] = { 49, 38, 65, 97, 76, 13, 27, 49, 78, 34, 12, 64, 5, 4, 62, 99, 98, 54, 56, 17, 18, 23, 34, 15, 35, 25,
            53, 51 };

    public mergingSort() {
        sort(a, 0, a.length - 1);
        for (int i = 0; i < a.length; i++)
            System.out.println(a[i]);
    }

    public void sort(int[] data, int left, int right) {
        // TODO Auto-generated method stub
        if (left < right) {
            // 找出中间索引
            int center = (left + right) / 2;
            // 对左边数组进行递归
            sort(data, left, center);
            // 对右边数组进行递归
            sort(data, center + 1, right);
            // 合并
            merge(data, left, center, right);

        }
    }

    public void merge(int[] data, int left, int center, int right) {
        // TODO Auto-generated method stub
        int[] tmpArr = new int[data.length];
        int mid = center + 1;
        // third记录中间数组的索引
        int third = left;
        int tmp = left;
        while (left <= center && mid <= right) {

            // 从两个数组中取出最小的放入中间数组
            if (data[left] <= data[mid]) {
                tmpArr[third++] = data[left++];
            } else {
                tmpArr[third++] = data[mid++];
            }
        }
        // 剩余部分依次放入中间数组
        while (mid <= right) {
            tmpArr[third++] = data[mid++];
        }
        while (left <= center) {
            tmpArr[third++] = data[left++];
        }
        // 将中间数组中的内容复制回原数组
        while (tmp <= right) {
            data[tmp] = tmpArr[tmp++];
        }
        System.out.println(Arrays.toString(data));
    }

}

基数排序

(1)基本思想:将所有待比较数值(正整数)统一为同样的数位长度,数位较短的数前面补零。然后,从最低位开始,依次进行一次排序。这样从最低位排序一直到最高位排序完成以后,数列就变成一个有序序列。
(2)实例:

基数排序

(3)用java实现

import java.util.ArrayList;
import java.util.List;

public class radixSort {
    int a[] = { 49, 38, 65, 97, 76, 13, 27, 49, 78, 34, 12, 64, 5, 4, 62, 99, 98, 54, 101, 56, 17, 18, 23, 34, 15, 35,
            25, 53, 51 };

    public radixSort() {
        sort(a);
        for (int i = 0; i < a.length; i++)
            System.out.println(a[i]);
    }

    public void sort(int[] array) {

        // 首先确定排序的趟数;
        int max = array[0];
        for (int i = 1; i < array.length; i++) {
            if (array[i] > max) {
                max = array[i];
            }
        }

        int time = 0;
        // 判断位数;
        while (max > 0) {
            max /= 10;
            time++;
        }

        // 建立10个队列;
        List<ArrayList> queue = new ArrayList<ArrayList>();
        for (int i = 0; i < 10; i++) {
            ArrayList<Integer> queue1 = new ArrayList<Integer>();
            queue.add(queue1);
        }

        // 进行time次分配和收集;
        for (int i = 0; i < time; i++) {

            // 分配数组元素;
            for (int j = 0; j < array.length; j++) {
                // 得到数字的第time+1位数;
                int x = array[j] % (int) Math.pow(10, i + 1) / (int) Math.pow(10, i);
                ArrayList<Integer> queue2 = queue.get(x);
                queue2.add(array[j]);
                queue.set(x, queue2);
            }
            int count = 0;// 元素计数器;
            // 收集队列元素;
            for (int k = 0; k < 10; k++) {
                while (queue.get(k).size() > 0) {
                    ArrayList<Integer> queue3 = queue.get(k);
                    array[count] = queue3.get(0);
                    queue3.remove(0);
                    count++;
                }
            }
        }
    }

}

相关 [java 程序员 排序算法] 推荐:

Java程序员必知的8大排序算法

- - JavaRanger - 专注JAVA高性能程序开发、JVM、Mysql优化、算法
(1)基本思想:在要排序的一组数中,假设前面(n-1)[n>=2] 个数已经是排. 好顺序的,现在要把第n个数插到前面的有序数中,使得这n个数. 如此反复循环,直到全部排好顺序. //将大于temp的值整体后移一个单位. (1)基本思想:算法先将要排序的一组数按某个增量d(n/2,n为要排序数的个数)分成若干组,每组中记录的下标相差d.对每组中全部元素进行直接插入排序,然后再用一个较小的增量(d/2)对它进行分组,在每组中再进行直接插入排序.

Java排序算法:归并排序

- - zzm
 Java排序算法(九):归并排序. 归并排序(Merge)是将两个(或两个以上)有序表合并成一个新的有序表,即把待排序序列分为若干个子序列,每个子序列是有序的. 然后再把有序子序列合并为整体有序序列. 归 并排序是建立在归并操作上的一种有效的排序算法. 该算法是采用分治法(Divide and Conquer)的一个非常典型的应用.

按List中对像某属性排序算法4---JAVA简单选择排序

- - ITeye博客
按List中Person类的age属性进行排序. * User: fuliguo * Date: 12-7-29 * Time: 下午13:09 * To change this template use File | Settings | File Templates. MyPersonListSortTest_SimpleSelection类:.

排序算法

- - 互联网 - ITeye博客
排序算法有很多,所以在特定情景中使用哪一种算法很重要. 为了选择合适的算法,可以按照建议的顺序考虑以下标准: .     对于数据量较小的情形,(1)(2)差别不大,主要考虑(3);而对于数据量大的,(1)为首要.  一、冒泡(Bubble)排序——相邻交换 .  二、选择排序——每次最小/大排在相应的位置 .

Java程序员常用工具集

- - BlogJava-庄周梦蝶
    我发现很多人没办法高效地解决问题的关键原因是不熟悉工具,不熟悉工具也还罢了,甚至还不知道怎么去找工具,这个问题就大条了. 我想列下我能想到的一个Java程序员会用到的常用工具. 1.IDE: Eclipse或者 IDEA,熟悉尽可能多的快捷键,《 Eclipse常见快捷键列表》. (1) Findbugs,在release之前进行一次静态代码检查是必须的.

Java系统程序员修炼之道

- - 博客 - 伯乐在线
从2002开始接触Java学会HelloWorld这么经典的程序到如今不知不觉已经十年啦,十年中亲耳听到过不少大牛的演讲,见到过项目中的神人在键盘上运指如飞的编程速度,当时就被震撼了. 当编程越来越成体力活,我们还能有自己的思想,还能修炼为Java系统级别的 程序员嘛. 学习与修炼以下知识与技能,帮你早日达成愿望.

Java程序员的现代RPC指南

- - CSDN博客推荐文章
Java程序员的现代RPC指南. 最早接触RPC还是初学Java时,直接用Socket API传东西好麻烦. 于是发现了JDK直接支持的RMI,然后就用得不亦乐乎,各种大作业里凡是涉及到分布式通信的都用RMI,真是方便. 后来用上了Spring,发现Spring提供了好多Exporter,可以无侵入地将一个POJO暴露为RPC服务.

Java面试题:多线程,作为Java程序员你不得不懂

- sun - IT程序员面试网
线程:是指进程中的一个执行流程. 线程与进程的区别:每个进程都需要操作系统为其分配独立的内存地址空间,而同一进程中的所有线程在同一块地址空间中工作,这些线程可以共享同一块内存和系统资源. 创建线程有两种方式,如下: 1、 扩展java.lang.Thread类 2、 实现Runnable接口 Thread类代表线程类,它的两个最主要的方法是: run()——包含线程运行时所执行的代码 Start()——用于启动线程.

Java程序员不该有的6种陋习

- - BlogJava-首页技术区
只有在学会处理异常之后,我们才能说自己是一个合格的java程序员. 只有在摆脱了以下六种异常处理的陋习之后,才能威慑一下刚毕业的小菜鸟.   现在就来测试一下大家对异常的掌握程度. 不用担心,事实上,这些不合理的设计很容易看出来. 那么,以下六种不合理的代码,大家能看出每一种的问题出在哪儿吗.   + ",姓名:" + rs.getString("name"));.

25个让Java程序员更高效的Eclipse插件

- - 博客 - 伯乐在线
Eclipse提供了一个可扩展插件的开发系统. 这就使得Eclipse在运行系统之上可以实现各种功能. 这些插件也不同于其他的应用(插件的功能是最难用代码实现的). 拥有合适的Eclipse插件是非常重要的,因为它们能让Java开发者们无缝的开发基于J2EE和服务的应用程序. Eclipse的插件也能帮助他们开发不同应用架构上的程序.