MapReduce中combine、partition、shuffle的作用是什么

标签: mapreduce combine partition | 发表时间:2016-01-05 05:48 | 作者:MrCharles
出处:http://blog.csdn.net
http://www.aboutyun.com/thread-8927-1-1.html


Mapreduce在hadoop中是一个比较难以的概念。下面需要用心看,然后自己就能总结出来了。

概括:
combine和partition都是函数,中间的步骤应该只有shuffle!

1.combine
combine分为map端和reduce端,作用是把同一个key的键值对合并在一起,可以自定义的。
combine函数把一个map函数产生的<key,value>对(多个key,value)合并成一个新的<key2,value2>.将新的<key2,value2>作为输入到reduce函数中
这个value2亦可称之为values,因为有多个。这个合并的目的是为了减少网络传输。

具体实现是由Combine类。
实现combine函数,该类的主要功能是合并相同的key键,通过job.setCombinerClass()方法设置,默认为null,不合并中间结果。实现map函数
具体调用:(下图是调用reduce,合并map的个数)

难点:不知道这个reduce和mapreduce中的reduce区别是什么?
下面简单说一下:后面慢慢琢磨:
在mapreduce中,map多,reduce少。
在reduce中由于数据量比较多,所以干脆,我们先把自己map里面的数据归类,这样到了reduce的时候就减轻了压力。

这里举个例子:
map与reduce的例子
map理解为销售人员,reduce理解为销售经理。
每个人(map)只管销售,赚了多少钱销售人员不统计,也就是说这个销售人员没有Combine,那么这个销售经理就累垮了,因为每个人都没有统计,它需要统计所有人员卖了多少件,赚钱了多少钱。
这样是不行的,所以销售经理(reduce)为了减轻压力,每个人(map)都必须统计自己卖了多少钱,赚了多少钱(Combine),然后经理所做的事情就是统计每个人统计之后的结果。这样经理就轻松多了。所以Combine在map所做的事情,减轻了reduce的事情。
(这就是为什么说map的Combine干reduce的事情,相信你应该明白了)
public  static void main(String[] args)throws IOException {
        Configuration conf = new Configuration();
        Job job = new Job(conf);
        job.setInputFormatClass(TextInputFormat.class);
        job.setMapperClass(Mapper.class);
        job.setCombinerClass(reduce.class);
        job.setPartitionerClass(HashPartitioner.class);
        job.setReducerClass(Reducer.class);
        job.setOutputFormatClass(TextOutFormat.class);
    }
}



2.partition
partition是分割map每个节点的结果,按照key分别映射给不同的reduce,也是可以自定义的。这里其实可以理解归类。
我们对于错综复杂的数据归类。比如在动物园里有牛羊鸡鸭鹅,他们都是混在一起的,但是到了晚上他们就各自牛回牛棚,羊回羊圈,鸡回鸡窝。partition的作用就是把这些数据归类。只不过在写程序的时候,mapreduce使用哈希HashPartitioner帮我们归类了。这个我们也可以自定义。

        HashPartitioner是mapreduce的默认partitioner。计算方法是

which reducer=(key.hashCode() & Integer.MAX_VALUE) % numReduceTasks,得到当前的目的reducer。

下面在看该如何自定义,该如何调用:(下面便是自定义了一个Partition函数,红字部分是算法的核心,也就是分区的核心)
public static class Partition extends Partitioner<IntWritable, IntWritable> {
                @Override
                public int getPartition(IntWritable key, IntWritable value,
                                int numPartitions) {
                        int Maxnumber = 65223;
                        int bound = Maxnumber / numPartitions + 1;
                        int keynumber = key.get();
                        for (int i = 0; i < numPartitions; i++) {
                                if (keynumber < bound * i && keynumber >= bound * (i - 1)) {
                                        return i - 1;
                                }
                        }
                        return 0;
                }

        }

那么我们该如何调用:(下面调用之后,你的分区函数就生效了)

public static void main(String[] args) throws IOException,
InterruptedException, ClassNotFoundException {
Configuration conf = new Configuration();
Job job = new Job(conf, "sort");
job.setJarByClass(Sort.class);
job.setMapperClass(Map.class);
job.setReducerClass(Reduce.class);
job.setPartitionerClass(Partition.class);
job.setOutputKeyClass(IntWritable.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.setInputPaths(job, "/home/asheng/hadoop/in");
FileOutputFormat
.setOutputPath(job, new Path("/home/asheng/hadoop/out"));
job.waitForCompletion(true);
}
}



3.shuffle

shuffle就是map和reduce之间的过程,包含了两端的combine和partition。它比较难以理解,因为我们摸不着,看不到它,它只是理论存在的,而且确实存在,它属于mapreduce的框架,编程的时候,我们用不到它,它属于mapreduce框架。详细可以看 通过实例让你真正明白mapreduce---填空式、分布(分割)编程

3.1shuffle的作用是
Map的结果,会通过partition分发到Reducer上,Reducer做完Reduce操作后,通过OutputFormat,进行输出
shuffle阶段的主要函数是fetchOutputs(),这个函数的功能就是将map阶段的输出,copy到reduce 节点本地。

作者:MrCharles 发表于2016/1/4 21:48:40 原文链接
阅读:0 评论:0 查看评论

相关 [mapreduce combine partition] 推荐:

MapReduce中combine、partition、shuffle的作用是什么

- - CSDN博客推荐文章
Mapreduce在hadoop中是一个比较难以的概念. 下面需要用心看,然后自己就能总结出来了. combine和partition都是函数,中间的步骤应该只有shuffle. combine分为map端和reduce端,作用是把同一个key的键值对合并在一起,可以自定义的. combine函数把一个map函数产生的对(多个key,value)合并成一个新的.将新的作为输入到reduce函数中.

Mapreduce小结

- MAGI-CASPER/Peter Pan - 博客园-唯有前进值得敬仰
读完mapreduce论文小结一下. 1.MapReduce是一个编程模型,封装了并行计算、容错、数据分布、负载均衡等细节问题. 输入是一个key-value对的集合,中间输出也是key-value对的集合,用户使用两个函数:Map和Reduce. Map函数接受一个输入的key-value对,然后产生一个中间key-value 对的集合.

Hadoop MapReduce技巧

- - 简单文本
我在使用Hadoop编写MapReduce程序时,遇到了一些问题,通过在Google上查询资料,并结合自己对Hadoop的理解,逐一解决了这些问题. Hadoop对MapReduce中Key与Value的类型是有要求的,简单说来,这些类型必须支持Hadoop的序列化. 为了提高序列化的性能,Hadoop还为Java中常见的基本类型提供了相应地支持序列化的类型,如IntWritable,LongWritable,并为String类型提供了Text类型.

MapReduce原理

- - C++博客-牵着老婆满街逛
       MapReduce 是由Google公司的Jeffrey Dean 和 Sanjay Ghemawat 开发的一个针对大规模群组中的海量数据处理的分布式编程模型. MapReduce实现了两个功能. Map把一个函数应用于集合中的所有成员,然后返回一个基于这个处理的结果集. 而Reduce是把从两个或更多个Map中,通过多个线程,进程或者独立系统并行执行处理的结果集进行分类和归纳.

MapReduce优化

- - 行业应用 - ITeye博客
相信每个程序员在 编程时都会问自己两个问题“我如何完成这个任务”,以及“怎么能让程序运行得更快”. 同样,MapReduce计算模型的多次优化也是为了更好地解答这两个问题. MapReduce计算模型的优化涉及了方方面面的内容,但是主要集中在两个方面:一是计算性能方面的优化;二是I/O操作方面的优化.

Spark与Mapreduce?

- - 崔永键的博客
我本人是类似Hive平台的系统工程师,我对MapReduce的熟悉程度是一般,它是我的底层框架. 我隔壁组在实验Spark,想将一部分计算迁移到Spark上. 年初的时候,看Spark的评价,几乎一致表示,Spark是小数据集上处理复杂迭代的交互系统,并不擅长大数据集,也没有稳定性. 但是最近的风评已经变化,尤其是14年10月他们完成了Peta sort的实验,这标志着Spark越来越接近替代Hadoop MapReduce了.

Hadoop 高级程序设计(三)---自定义Partition和Combiner

- - CSDN博客云计算推荐文章
Hadoop提供了缺省的Partition来完成map的输出向reduce分发处理. 有时也需要自定义partition来将相同key值的数据分发到同一个reduce处理,为了减少map过程输出的中间结果键值对的数量,降低网络数据通信开销,用户也可以自定制combiner过程. 自定制Partition过程:.

Google Percolator替代MapReduce

- Hao - Solidot
Google在新一代内容索引系统中放弃了MapReduce,替代者是尚不为人知的分布式数据处理系统Percolator. The Register报道,Percolator是一种增量处理平台,它能持续更新索引系统,无需从头重新处理一遍整个系统. Google的工程师计划在下个月举行的年度USENIX Symposium 会议上公布Percolator相关论文.

下一代Hadoop MapReduce

- Jia - NoSQLFan
本文来自Hadoop Summit大会的一个演讲稿,主讲是Hadoop核心开发团队的Arun C Murthy (@acmurthy),同时他也是Yahoo!刚刚剥离的Hadoop独立公司Hortonworks的 Founder和架构师. 演讲中他讲述了现在的Hadoop存在的一些问题和集群上限,并展望了下一代Hadoop和其MapReduce将会得到的巨大提升.

MapReduce执行流程

- - CSDN博客云计算推荐文章
MapReduce的大体流程是这样的,如图所示:. 由图片可以看到mapreduce执行下来主要包含这样几个步骤. 1.首先对输入数据源进行切片. 2.master调度worker执行map任务. 3.worker读取输入源片段. 4.worker执行map任务,将任务输出保存在本地. 5.master调度worker执行reduce任务,reduce worker读取map任务的输出文件.