Java直接(堆外)内存使用详解

标签: 基础技术 内存管理 | 发表时间:2016-10-17 07:42 | 作者:liuchi1993
出处:http://www.importnew.com

本篇主要讲解如何使用直接内存(堆外内存),并按照下面的步骤进行说明:

相关背景-->读写操作-->关键属性-->读写实践-->扩展-->参考说明

希望对想使用直接内存的朋友,提供点快捷的参考。

数据类型

下面这些,都是在使用 DirectBuffer中必备的一些常识,暂作了解吧!如果想要深入理解,可以看看下面参考的那些博客。

基本类型长度

在Java中有很多的基本类型,比如:

  • byte,一个字节是8位bit,也就是1B
  • short,16位bit,也就是2B
  • int,32位bit,也就是4B
  • long, 64位bit,也就是8B
  • char,16位bit,也就是2B
  • float,32位bit,也就是4B
  • double,64位bit,也就是8B

不同的类型都会按照自己的位数来存储,并且可以自动进行转换提升。
bytecharshort都可以自动提升为 int,如果操作数有 long,就会自动提升为 longfloatdouble也是如此。

大端小端

由于一个数据类型可能有很多个字节组成的,那么它们是如何摆放的。这个是有讲究的:

  • 大端:低地址位 存放 高有效字节
  • 小端:低地址位 存放 低有效字节

举个例子,一个 char是有两个字节组成的,这两个字节存储可能会显示成如下的模样,比如字符 a:

              低地址位    高地址位
大端;        00              96
小端:        96              00

String与new String的区别

再说说 "hello"new String("hello")的区别:

如果是 "hello",JVM会先去共享的字符串池中查找,有没有 "hello"这个词,如果有直接返回它的引用;如果没有,就会创建这个对象,再返回。因此, "a"+"b"相当于存在3个对象,分别是 "a""b""ab"

new String("hello"),则省去了查找的过程,直接就创建一个 hello的对象,并且返回引用。

读写数据

在直接内存中,通过 allocateDirect(int byte_length)申请直接内存。这段内存可以理解为一段普通的基于 Byte的数组,因此插入和读取都跟普通的数组差不多。

只不过提供了基于不同数据类型的插入方法,比如:

  • put(byte) 插入一个byte
  • put(byte[]) 插入一个byte数组
  • putChar(char) 插入字符
  • putInt(int) 插入Int
  • putLong(long) 插入long

等等….详细的使用方法,也可以参考下面的图片:

对应读取数据,跟写入差不多:

注意所有没有index参数的方法,都是按照当前position的位置进行操作的。

下面看看什么是position,还有什么其他的属性吧!

基本的属性值

它有几个关键的指标:

mark-->position-->limit-->capacity

另外,还有 remaining=limit-position

先说说他们的意思吧!

当前位置——position

position是当前数组的指针,指示当前数据位置。举个例子:

ByteBuffer buffer = ByteBuffer.allocateDirect(1024);
buffer.putChar('a');
System.out.println(buffer);
buffer.putChar('c');
System.out.println(buffer);
buffer.putInt(10);
System.out.println(buffer);

由于一个char是2个字节,一个Int是4个字节,因此position的位置分别是:

2,4,8

注意,Position的位置是插入数据的当前位置,如果插入数据,就会自动后移。
也就是说,如果存储的是两个字节的数据,position的位置是在第三个字节上,下标就是2。

java.nio.DirectByteBuffer[pos=2 lim=1024 cap=1024]
java.nio.DirectByteBuffer[pos=4 lim=1024 cap=1024]
java.nio.DirectByteBuffer[pos=8 lim=1024 cap=1024]
  • position可以通过position()获得,也可以通过position(int)设置。
//position(int)方法的源码
public final Buffer position(int newPosition) {
        if ((newPosition > limit) || (newPosition < 0))
            throw new IllegalArgumentException();
        position = newPosition;
        if (mark > position) mark = -1;
        return this;
    }

注意:position的位置要比limit小,比mark大

空间容量——capacity

capacity是当前申请的直接内存的容量,它是申请后就不会改变的。

  • capacity则可以通过capacity()方法获得。

限制大小——limit

我们可能想要改变这段直接内存的大小,因此可以通过一个叫做Limit的属性设置。

  • limit则可以通过limit()获得,通过limit(int)进行设置。

注意limit要比mark和position大,比capacity小。

//limit(int)方法的源码
public final Buffer limit(int newLimit) {
        if ((newLimit > capacity) || (newLimit < 0))
            throw new IllegalArgumentException();
        limit = newLimit;
        if (position > limit) position = limit;
        if (mark > limit) mark = -1;
        return this;
    }

标记位置——mark

mark,就是一个标记为而已,记录当前的position的值。常用的场景,就是记录某一次插入数据的位置,方便下一次进行回溯。

  • 可以使用 mark()方法进行标记,
  • 使用 reset()方法进行清除,
  • 使用 rewind()方法进行初始化
    //mark方法标记当前的position,默认为-1
    public final Buffer mark() {
    mark = position;
    return this;
    }
    //reset方法重置mark的位置,position的位置,不能小于mark的位置,否则会出错
    public final Buffer reset() {
    int m = mark;
    if (m < 0)
        throw new InvalidMarkException();
    position = m;
    return this;
    }
    //重置mark为-1.position为0
    public final Buffer rewind() {
    position = 0;
    mark = -1;
    return this;
    }

    使用案例

    ByteBuffer buffer = ByteBuffer.allocateDirect(1024);
    buffer.putChar('a');
    buffer.putChar('c');
    System.out.println("插入完数据 " + buffer);
    buffer.mark();// 记录mark的位置
    buffer.position(30);// 设置的position一定要比mark大,否则mark无法重置
    System.out.println("reset前 " + buffer);
    buffer.reset();// 重置reset ,reset后的position=mark
    System.out.println("reset后 " + buffer);
    buffer.rewind();//清除标记,position变成0,mark变成-1
    System.out.println("清除标记后 " + buffer);

    可以看到如下的运行结果:

    插入完数据 java.nio.DirectByteBuffer[pos=4 lim=1024 cap=1024]
    reset前 java.nio.DirectByteBuffer[pos=30 lim=1024 cap=1024]
    reset后 java.nio.DirectByteBuffer[pos=4 lim=1024 cap=1024]
    清除标记后 java.nio.DirectByteBuffer[pos=0 lim=1024 cap=1024]

剩余空间——remaing

remaing则表示当前的剩余空间:

  public final int remaining() {
        return limit - position;
    }

读写实践

写操作主要就是按照自己的数据类型,写入到直接内存中,注意每次写入数据的时候,position都会自动加上写入数据的长度,指向下一个该写入的起始位置:

下面看看如何写入一段byte[]或者字符串:

ByteBuffer buffer = ByteBuffer.allocateDirect(10);
byte[] data = {1,2};
buffer.put(data);
System.out.println("写byte[]后 " + buffer);
buffer.clear();
buffer.put("hello".getBytes());
System.out.println("写string后 " + buffer);

输出的内容为:

写byte[]后 java.nio.DirectByteBuffer[pos=2 lim=10 cap=10]
写string后 java.nio.DirectByteBuffer[pos=5 lim=10 cap=10]

读的时候,可以通过一个外部的 byte[]数组进行读取。由于没有找到直接操作直接内存的方法: 因此如果想在JVM应用中使用直接内存,需要申请一段堆中的空间,存放数据。

如果有更好的方法,还请留言。

ByteBuffer buffer = ByteBuffer.allocateDirect(10);
buffer.put(new byte[]{1,2,3,4});
System.out.println("刚写完数据 " +buffer);
buffer.flip();
System.out.println("flip之后 " +buffer);
byte[] target = new byte[buffer.limit()];
buffer.get(target);//自动读取target.length个数据
for(byte b : target){
    System.out.println(b);
}
System.out.println("读取完数组 " +buffer);

输出为

刚写完数据 java.nio.DirectByteBuffer[pos=4 lim=10 cap=10]
flip之后 java.nio.DirectByteBuffer[pos=0 lim=4 cap=10]
1
2
3
4
读取完数组 java.nio.DirectByteBuffer[pos=4 lim=4 cap=10]

常用方法

上面的读写例子中,有几个常用的方法:

clear()

这个方法用于清除mark和position,还有limit的位置:

public final Buffer clear() {
        position = 0;
        limit = capacity;
        mark = -1;
        return this;
    }

flip()

这个方法主要用于改变当前的Position为limit,主要是用于读取操作。

   public final Buffer flip() {
        limit = position;
        position = 0;
        mark = -1;
        return this;
    }

compact()

这个方法在读取一部分数据的时候比较常用。
它会把当前的Position移到0,然后position+1移到1。

    public ByteBuffer compact() {
        int pos = position();
        int lim = limit();
        assert (pos <= lim);
        int rem = (pos <= lim ? lim - pos : 0);

        unsafe.copyMemory(ix(pos), ix(0), rem << 0);
        position(rem);
        limit(capacity());
        discardMark();
        return this;
    }

比如一段空间内容为:

123456789

当position的位置在2时,调用compact方法,会变成:

345678989

isDirect()

这个方法用于判断是否是直接内存。如果是返回true,如果不是返回false。

rewind()

这个方法用于重置mark标记:

 public final Buffer rewind() {
        position = 0;
        mark = -1;
        return this;
    }

参考

Java基本数据类型
Java中大端与小端

相关文章

相关 [java 内存] 推荐:

JAVA内存释放

- - Java - 编程语言 - ITeye博客
(问题一:什么叫垃圾回收机制. ) 垃圾回收是一种动态存储管理技术,它自动地释放不再被程序引用的对象,按照特定的垃圾收集算法来实现资源自动回收的功能. 当一个对象不再被引用的时候,内存回收它占领的空间,以便空间被后来的新对象使用,以免造成内存泄露. (问题二:java的垃圾回收有什么特点. ) JAVA语言不允许程序员直接控制内存空间的使用.

Java 堆内存(Heap)

- - ITeye博客
        堆(Heap)又被称为:优先队列(Priority Queue),是计算机科学中一类特殊的数据结构的统称. 堆通常是一个可以被看做一棵树的数组对象. 在队列中,调度程序反复提取队列中第一个作业并运行,因而实际情况中某些时间较短的任务将等待很长时间才能结束,或者某些不短小,但具有重要性的作业,同样应当具有优先权.

java内存泄漏

- - 编程语言 - ITeye博客
不论哪种语言的内存分配方式,都需要返回所分配内存的真实地址,也就是返回一个指针到内存块的首地址. Java中对象是采用new或者反射的方法创建的,这些对象的创建都是在堆(Heap)中分配的,所有对象的回收都是由Java虚拟机通过垃圾回收机制完成的. GC为了能够正确释放对象,会监控每个对象的运行状况,对他们的申请、引用、被引用、赋值等状况进行监控,Java会使用有向图的方法进行管理内存,实时监控对象是否可以达到,如果不可到达,则就将其回收,这样也可以消除引用循环的问题.

深入Java内存模型

- - ImportNew
你可以在网上找到一大堆资料让你了解JMM是什么东西,但大多在你看完后仍然会有很多疑问. happen-before是怎么工作的呢. 用volatile会导致缓存的丢弃吗. 为什么我们从一开始就需要内存模型. 通过这篇文章,读者可以学习到足以回答以上所有问题的知识. 它包含两大部分:第一部分是硬件层次的大体架构,第二部分是深入OpenJdk源代码和实现.

Java内存之"栈"与"堆"

- - ITeye博客
        昨天中午,发了一篇 equals和==区别的博文,晚上再看时有几位大牛指出了其中的一些错误,很感谢他们的留言,一句简简单单的留言给了我对这些错误知识点改正的机会. 或许这就是从事互联网行业所提倡的互帮互助的精神吧,因为有分享,有交流,互联网才会发展的如此迅猛. 大牛提的一个观点很好,好的东西可以拿出来分享,错的东西却可能带给别人错误的理解,这一点我确实得向看了我写了一些bug博客的人道个歉.

浅谈Java--内存泄漏

- - ITeye博客
      JAVA的垃圾回收机制,让许多程序员觉得内存管理不是很重要,但是内存内存泄露的事情恰恰这样的疏忽而发生,特别是对于Android开发,内存管理更为重要,养成良好的习惯,有利于避免内存的泄漏..     这里可以把许多对象和引用看成是有向图,顶点可以是对象也可以是引用,引用关系就是有向边.

Java 内存模型 JMM

- - 码蜂笔记
JMM,Java Memory Model,Java 内存模型. 什么是内存模型,要他何用. 假定一个线程为变量var赋值: var = 3;,内存模型要回答的问题是:在什么条件下,读取变量var的线程可以看到 3这个值. 如果缺少了同步,线程可能无法看到其他线程操作的结果. 导致这种情况的原因可以有:编译器生成指令的次序可以不同于源代码的“显然”版本,编译器还会把变量存储在寄存器而不是内存中;处理器可以乱序或并行执行指令;缓存会改变写入提交到主存得到变量的次序;存储在处理器本地缓存中的变量对其他处理器不可见 等等.

Java的内存泄露

- - Java译站
Java有垃圾回收,因此不会出现内存泄露. 尽管Java的确有垃圾回收器来回收那些不用的内存块,但你不要指望它能够点铁成金. GC减轻了开发人员肩上的负担,而原本的那些工作非常容易出错,不过并不是所有内存分配的问题它都能够解决. 更糟糕的是,Java的设计允许它可以欺骗GC,使得它能够保留一些程序已经不再使用的内存.

Java的内存机制

- - Java - 编程语言 - ITeye博客
1.Java的内存机制.  Java 把内存划分成两种:一种是栈内存,另一种是堆内存. 在函数中定义的一些基本类型的变量和对象的引用变量都是在函数的栈内存中分配,当在一段代码块定义一个变量时,Java 就在栈中为这个变量分配内存空间,当超过变量的作用域后(比如,在函数A中调用函数B,在函数B中定义变量a,变量a的作用域只是函数B,在函数B运行完以后,变量a会自动被销毁.

Java 内存溢出排查

- - ImportNew
Java OOM 毫无疑问是开发人员常见并且及其痛恨的问题,但是任何服务的开发都没法避免 OOM. 因此,OOM 的排查及定位是每个 Java 工程师都必备的技能. 在使用 scala 开发的一个 web 服务,在用户使用中,经常出现:  java.lang.OutOfMemoryError: Java heap space .