用redis实现类似微信摇一摇
- - 数据库 - ITeye博客1, 客户端上传用户id和经纬度. 客户端在等待n秒后, 将用户id和上次服务器返回的字符串(wkw69y)一起上传至服务器端, 服务器端只需用redis的 keys wkw69y* 就能获取所有的key, 通过截取key中的userid就可以得到附近的人的用户id. 3, 如果客户端要显示相距xx米,按距离排序怎么搞.
@RequestMapping(value = "/xx")
@ResponseBody
public String yaoYiYao(Integer userid, String pwd, Double longitude, Double latitude) {
String hashval = GeoHash.encode(latitude, longitude);
//密码-hash值-用户id, 拼接起来作为redis的key
String key = (StringUtils.isNotBlank(pwd) ? "" : (pwd.trim() + "-")) + hashval + "-" + userid;
redisCache.setWithExpire(key, "", 10);
return (StringUtils.isNotBlank(pwd) ? "" : (pwd.trim() + "-")) + hashval.substring(0, 6);
}
@RequestMapping(value = "/xx")
@ResponseBody
public String yaoYiYaoList(Integer userid, String hashval) {
//从redis中取出所有以hashval开头的key
Set<String> set = redisCache.keys(hashval + "*");
if (CollectionUtils.isEmpty(set)) {
return null;
}
Set<Integer> useridSet = new HashSet<>();
//遍历key, 从key中截取出用户id
for (String key : set) {
String keyArr[] = key.split("-");
useridSet.add(Integer.valueOf(keyArr[keyArr.length - 1]));//取最后一个
}
useridSet.remove(userid);//排除自己
// TODO 已经拿到用户id集合, 接下来就是查询数据了
}
import java.util.BitSet;
import java.util.HashMap;
public class GeoHash {
private static int numbits = 6 * 5; //经纬度单独编码长度
//32位编码对应字符
final static char[] digits = { '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'b', 'c', 'd', 'e', 'f', 'g', 'h',
'j', 'k', 'm', 'n', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z' };
//定义编码映射关系
final static HashMap<Character, Integer> lookup = new HashMap<Character, Integer>();
//初始化编码映射内容
static {
int i = 0;
for (char c : digits)
lookup.put(c, i++);
}
//对编码后的字符串解码
public double[] decode(String geohash) {
StringBuilder buffer = new StringBuilder();
for (char c : geohash.toCharArray()) {
int i = lookup.get(c) + 32;
buffer.append(Integer.toString(i, 2).substring(1));
}
BitSet lonset = new BitSet();
BitSet latset = new BitSet();
//偶数位,经度
int j = 0;
for (int i = 0; i < numbits * 2; i += 2) {
boolean isSet = false;
if (i < buffer.length())
isSet = buffer.charAt(i) == '1';
lonset.set(j++, isSet);
}
//奇数位,纬度
j = 0;
for (int i = 1; i < numbits * 2; i += 2) {
boolean isSet = false;
if (i < buffer.length())
isSet = buffer.charAt(i) == '1';
latset.set(j++, isSet);
}
double lon = decode(lonset, -180, 180);
double lat = decode(latset, -90, 90);
return new double[] { lat, lon };
}
//根据二进制和范围解码
private double decode(BitSet bs, double floor, double ceiling) {
double mid = 0;
for (int i = 0; i < bs.length(); i++) {
mid = (floor + ceiling) / 2;
if (bs.get(i))
floor = mid;
else
ceiling = mid;
}
return mid;
}
//对经纬度进行编码
public static String encode(double lat, double lon) {
BitSet latbits = getBits(lat, -90, 90);
BitSet lonbits = getBits(lon, -180, 180);
StringBuilder buffer = new StringBuilder();
for (int i = 0; i < numbits; i++) {
buffer.append((lonbits.get(i)) ? '1' : '0');
buffer.append((latbits.get(i)) ? '1' : '0');
}
return base32(Long.parseLong(buffer.toString(), 2));
}
//根据经纬度和范围,获取对应二进制
private static BitSet getBits(double lat, double floor, double ceiling) {
BitSet buffer = new BitSet(numbits);
for (int i = 0; i < numbits; i++) {
double mid = (floor + ceiling) / 2;
if (lat >= mid) {
buffer.set(i);
floor = mid;
} else {
ceiling = mid;
}
}
return buffer;
}
//将经纬度合并后的二进制进行指定的32位编码
private static String base32(long i) {
char[] buf = new char[65];
int charPos = 64;
boolean negative = (i < 0);
if (!negative)
i = -i;
while (i <= -32) {
buf[charPos--] = digits[(int) (-(i % 32))];
i /= 32;
}
buf[charPos] = digits[(int) (-i)];
if (negative)
buf[--charPos] = '-';
return new String(buf, charPos, (65 - charPos));
}
public static void main(String[] args) throws Exception {
GeoHash geohash = new GeoHash();
String s = geohash.encode(25.770000, 110.125555);
System.out.println(s);
double[] geo = geohash.decode(s);
System.out.println(geo[0] + " " + geo[1]);
}
}