摘要:
RDD:弹性分布式数据集,是一种特殊集合 ‚ 支持多种来源 ‚ 有容错机制 ‚ 可以被缓存 ‚ 支持并行操作,一个RDD代表一个分区里的数据集
RDD有两种操作算子:
Transformation(转换):Transformation属于延迟计算,当一个RDD转换成另一个RDD时并没有立即进行转换,仅仅是记住 了数据集的逻辑操作
Ation(执行):触发Spark作业的运行,真正触发转换算子的计算
本系列主要讲解Spark中常用的函数操作:
1.RDD基本转换
2.键-值RDD转换
3.Action操作篇
本节所讲函数
1.mapValus(fun):对[K,V]型数据中的V值map操作 (例1):对每个的的年龄加2
1 2 3 4 5 6 7 8 9 10 | object MapValues {
def main(args: Array[String]) {
val conf = new SparkConf().setMaster( "local" ).setAppName( "map" )
val sc = new SparkContext(conf)
val list = List(( "mobin" , 22 ),( "kpop" , 20 ),( "lufei" , 23 ))
val rdd = sc.parallelize(list)
val mapValuesRDD = rdd.mapValues(_+ 2 )
mapValuesRDD.foreach(println)
}
}
|
输出:
(mobin,24)
(kpop,22)
(lufei,25)
(RDD依赖图:红色块表示一个RDD区,黑色块表示该分区集合,下同)
2.flatMapValues(fun):对[K,V]型数据中的V值flatmap操作
(例2):
1 2 3 4 | val rdd = sc.parallelize(list)
val mapValuesRDD = rdd.flatMapValues(x => Seq(x, "male" ))
mapValuesRDD.foreach(println)
|
(mobin,22)
(mobin,male)
(kpop,20)
(kpop,male)
(lufei,23)
(lufei,male)
如果是mapValues会输出:
(mobin,List(22, male))
(kpop,List(20, male))
(lufei,List(23, male))
(RDD依赖图)
3.comineByKey(createCombiner,mergeValue,mergeCombiners,partitioner,mapSideCombine)
comineByKey(createCombiner,mergeValue,mergeCombiners,numPartitions)
comineByKey(createCombiner,mergeValue,mergeCombiners)
createCombiner:在第一次遇到Key时创建组合器函数,将RDD数据集中的V类型值转换C类型值(V => C),
如例3:
mergeValue:合并值函数,再次遇到相同的Key时,将createCombiner道理的C类型值与这次传入的V类型值合并成一个C类型值(C,V)=>C,
如例3:
mergeCombiners:合并组合器函数,将C类型值两两合并成一个C类型值
如例3:
partitioner:使用已有的或自定义的分区函数,默认是HashPartitioner
mapSideCombine:是否在map端进行Combine操作,默认为true
注意前三个函数的参数类型要对应;第一次遇到Key时调用createCombiner,再次遇到相同的Key时调用mergeValue合并值
(例3):统计男性和女生的个数,并以(性别,(名字,名字....),个数)的形式输出
1 2 3 4 5 6 7 8 9 10 11 12 13 14 | object CombineByKey {
def main(args: Array[String]) {
val conf = new SparkConf().setMaster( "local" ).setAppName( "combinByKey" )
val sc = new SparkContext(conf)
val people = List(( "male" , "Mobin" ), ( "male" , "Kpop" ), ( "female" , "Lucy" ), ( "male" , "Lufei" ), ( "female" , "Amy" ))
val rdd = sc.parallelize(people)
val combinByKeyRDD = rdd.combineByKey(
(x: String) => (List(x), 1 ),
(peo: (List[String], Int), x : String) => (x :: peo._1, peo._2 + 1 ),
(sex1: (List[String], Int), sex2: (List[String], Int)) => (sex1._1 ::: sex2._1, sex1._2 + sex2._2))
combinByKeyRDD.foreach(println)
sc.stop()
}
}
|
输出:
(male,(List(Lufei, Kpop, Mobin),3))
(female,(List(Amy, Lucy),2))
过程分解:
Partition1:
K="male" --> ("male","Mobin") --> createCombiner("Mobin") => peo1 = ( List("Mobin") , 1 )
K="male" --> ("male","Kpop") --> mergeValue(peo1,"Kpop") => peo2 = ( "Kpop" :: peo1_1 , 1 + 1 ) //Key相同调用mergeValue函数对值进行合并
K="female" --> ("female","Lucy") --> createCombiner("Lucy") => peo3 = ( List("Lucy") , 1 )
Partition2:
K="male" --> ("male","Lufei") --> createCombiner("Lufei") => peo4 = ( List("Lufei") , 1 )
K="female" --> ("female","Amy") --> createCombiner("Amy") => peo5 = ( List("Amy") , 1 )
Merger Partition:
K="male" --> mergeCombiners(peo2,peo4) => (List(Lufei,Kpop,Mobin))
K="female" --> mergeCombiners(peo3,peo5) => (List(Amy,Lucy))
(RDD依赖图)
4.foldByKey(zeroValue)(func)
foldByKey(zeroValue,partitioner)(func)
foldByKey(zeroValue,numPartitiones)(func)
foldByKey函数是通过调用CombineByKey函数实现的
zeroVale:对V进行初始化,实际上是通过CombineByKey的createCombiner实现的 V => (zeroValue,V),再通过func函数映射成新的值,即func(zeroValue,V),如例4可看作对每个V先进行 V=> 2 + V
func: Value将通过func函数按Key值进行合并(实际上是通过CombineByKey的mergeValue,mergeCombiners函数实现的,只不过在这里,这两个函数是相同的)
例4:
1 2 3 4 5 | val people = List(( "Mobin" , 2 ), ( "Mobin" , 1 ), ( "Lucy" , 2 ), ( "Amy" , 1 ), ( "Lucy" , 3 ))
val rdd = sc.parallelize(people)
val foldByKeyRDD = rdd.foldByKey( 2 )(_+_)
foldByKeyRDD.foreach(println)
|
输出:
(Amy,2)
(Mobin,4)
(Lucy,6)
先对每个V都加2,再对相同Key的value值相加。
5.reduceByKey(func,numPartitions):按Key进行分组,使用给定的func函数聚合value值, numPartitions设置分区数,提高作业并行度
例5
1 2 3 4 5 6 | val arr = List(( "A" , 3 ),( "A" , 2 ),( "B" , 1 ),( "B" , 3 ))
val rdd = sc.parallelize(arr)
val reduceByKeyRDD = rdd.reduceByKey(_ +_)
reduceByKeyRDD.foreach(println)
sc.stop
|
输出:
6.groupByKey(numPartitions):按Key进行分组,返回[K,Iterable[V]],numPartitions设置分区数,提高作业并行度
例6:
1 2 3 4 5 6 | val arr = List(( "A" , 1 ),( "B" , 2 ),( "A" , 2 ),( "B" , 3 ))
val rdd = sc.parallelize(arr)
val groupByKeyRDD = rdd.groupByKey()
groupByKeyRDD.foreach(println)
sc.stop
|
输出:
(B,CompactBuffer(2, 3))
(A,CompactBuffer(1, 2))
以上foldByKey,reduceByKey,groupByKey函数最终都是通过调用combineByKey函数实现的
7.sortByKey(accending,numPartitions):返回以Key排序的(K,V)键值对组成的RDD,accending为true时表示升序,为false时表示降序,numPartitions设置分区数,提高作业并行度
例7:
1 2 3 4 5 6 | val arr = List(( "A" , 1 ),( "B" , 2 ),( "A" , 2 ),( "B" , 3 ))
val rdd = sc.parallelize(arr)
val sortByKeyRDD = rdd.sortByKey()
sortByKeyRDD.foreach(println)
sc.stop
|
输出:
8.cogroup(otherDataSet,numPartitions):对两个RDD(如:(K,V)和(K,W))相同Key的元素先分别做聚合,最后返回(K,Iterator<V>,Iterator<W>)形式的RDD,numPartitions设置分区数,提高作业并行度
例8:
1 2 3 4 5 6 7 8 | val arr = List(( "A" , 1 ), ( "B" , 2 ), ( "A" , 2 ), ( "B" , 3 ))
val arr1 = List(( "A" , "A1" ), ( "B" , "B1" ), ( "A" , "A2" ), ( "B" , "B2" ))
val rdd1 = sc.parallelize(arr, 3 )
val rdd2 = sc.parallelize(arr1, 3 )
val groupByKeyRDD = rdd1.cogroup(rdd2)
groupByKeyRDD.foreach(println)
sc.stop
|
输出:
(B,(CompactBuffer(2, 3),CompactBuffer(B1, B2)))
(A,(CompactBuffer(1, 2),CompactBuffer(A1, A2)))
(RDD依赖图)
9.join(otherDataSet,numPartitions):对两个RDD先进行cogroup操作形成新的RDD,再对每个Key下的元素进行笛卡尔积,numPartitions设置分区数,提高作业并行度
例9
1 2 3 4 5 6 7 | val arr = List(( "A" , 1 ), ( "B" , 2 ), ( "A" , 2 ), ( "B" , 3 ))
val arr1 = List(( "A" , "A1" ), ( "B" , "B1" ), ( "A" , "A2" ), ( "B" , "B2" ))
val rdd = sc.parallelize(arr, 3 )
val rdd1 = sc.parallelize(arr1, 3 )
val groupByKeyRDD = rdd.join(rdd1)
groupByKeyRDD.foreach(println)
|
输出:
(B,(2,B1))
(B,(2,B2))
(B,(3,B1))
(B,(3,B2))
(A,(1,A1))
(A,(1,A2))
(A,(2,A1))
(A,(2,A2)
(RDD依赖图)
10.LeftOutJoin(otherDataSet,numPartitions):左外连接,包含左RDD的所有数据,如果右边没有与之匹配的用None表示,numPartitions设置分区数,提高作业并行度
例10:
1 2 3 4 5 6 7 8 | val arr = List(( "A" , 1 ), ( "B" , 2 ), ( "A" , 2 ), ( "B" , 3 ),( "C" , 1 ))
val arr1 = List(( "A" , "A1" ), ( "B" , "B1" ), ( "A" , "A2" ), ( "B" , "B2" ))
val rdd = sc.parallelize(arr, 3 )
val rdd1 = sc.parallelize(arr1, 3 )
val leftOutJoinRDD = rdd.leftOuterJoin(rdd1)
leftOutJoinRDD .foreach(println)
sc.stop
|
输出:
(B,(2,Some(B1)))
(B,(2,Some(B2)))
(B,(3,Some(B1)))
(B,(3,Some(B2)))
(C,(1,None))
(A,(1,Some(A1)))
(A,(1,Some(A2)))
(A,(2,Some(A1)))
(A,(2,Some(A2)))
11.RightOutJoin(otherDataSet, numPartitions):右外连接,包含右RDD的所有数据,如果左边没有与之匹配的用None表示,numPartitions设置分区数,提高作业并行度
例11:
1 2 3 4 5 6 7 8 | val arr = List(( "A" , 1 ), ( "B" , 2 ), ( "A" , 2 ), ( "B" , 3 ))
val arr1 = List(( "A" , "A1" ), ( "B" , "B1" ), ( "A" , "A2" ), ( "B" , "B2" ),( "C" , "C1" ))
val rdd = sc.parallelize(arr, 3 )
val rdd1 = sc.parallelize(arr1, 3 )
val rightOutJoinRDD = rdd.rightOuterJoin(rdd1)
rightOutJoinRDD.foreach(println)
sc.stop
|
(B,(Some(2),B1))
(B,(Some(2),B2))
(B,(Some(3),B1))
(B,(Some(3),B2))
(C,(None,C1))
(A,(Some(1),A1))
(A,(Some(1),A2))
(A,(Some(2),A1))
(A,(Some(2),A2))
以上例子源码地址:https://github.com/Mobin-F/SparkExample/tree/master/src/main/scala/com/mobin/SparkRDDFun/TransFormation/RDDBase