Spark Streaming 1.6 流式状态管理分析 - 简书
Spark 1.6发布后,官方声称流式状态管理有10倍性能提升。这篇文章会详细介绍Spark Streaming里新的流式状态管理。
关于状态管理
在流式计算中,数据是持续不断来的,有时候我们要对一些数据做跨周期(Duration)的统计,这个时候就不得不维护状态了。而状态管理对Spark 的 RDD模型是个挑战,因为在spark里,任何数据集都需要通过RDD来呈现,而RDD 的定义是一个不变的分布式集合。在状态管理中,比如Spark Streaming中的word-count 就涉及到更新原有的记录,比如在batch 1 中 A
出现1次,batch 2中出现3次,则总共出现了4次。这里就有两种实现:
- 获取batch 1 中的 状态RDD 和当前的batch RDD 做co-group 得到一个新的状态RDD。这种方式完美的契合了RDD的不变性,但是对性能却会有比较大的影响,因为需要对所有数据做处理,计算量和数据集大小是成线性相关的。这个我们后续会详细讨论。
- 第二种是一种变通的实现。因为没法变更RDD/Partition等核心概念,所以Spark Streaming在集合元素上做了文章,定义了
MapWithStateRDD
,将该RDD的元素做了限定,必须是MapWithStateRDDRecord
这个东西。该MapWithStateRDDRecord 保持有某个分区的所有key的状态(通过stateMap记录)以及计算结果(mappedData),元素MapWithStateRDDRecord 变成可变的,但是RDD 依然是不变的。
这两个方案分别对应了 updateStateByKey/mapWithState 的实现。
前言
在这篇文章中, Apache Spark 1.6发布,提到了spark1.6 三块性能改进:
- Parquet性能
- 自动内存管理模型
- 流式状态管理10倍性能提升
之前就想系统的对这三块仔细阐述下。现在总算有了第二篇。
本文会从三个方面展开:
updateStateByKey的实现
在 关于状态管理中,我们已经描述了一个大概。该方法可以在 org.apache.spark.streaming.dstream.PairDStreamFunctions
中找到。调用该方法后会构建出一个 org.apache.spark.streaming.dstream.StateDStream
对象。计算的方式也较为简单,核心逻辑是下面两行代码:
val cogroupedRDD = parentRDD.cogroup(prevStateRDD, partitioner)
val stateRDD = cogroupedRDD.mapPartitions(finalFunc, preservePartitioning)
Some(stateRDD)
首先将 prevStateRDD
和 parentRDD
(新batch 的数据) 做一次cogroup,形成了 (K, Seq[V], Seq[W])
这样的结果集。你会发现和updateStateByKey 要求的 (Seq[V], Option[S])
签名还是有些类似的。事实上这里的Seq[V] 就是parentRDD的对应K 的新的值。为了适配他两,Spark 内部会对你传进来的 updateFunc
做两次转换,从而使得你的函数能够接受 (K, Seq[V], Seq[W])
这样的参数。看到这,想必你也就知道为啥updateStateByKey 接受的函数签名是那样的了。
前文我们提到,这样做很漂亮,代码也少,契合RDD的概念,然而你会发现无论parentRDD里有多少key,哪怕是只有一个,也需要对原有所有的数据做cogroup 并且全部做一遍处理(也就是应用你的update函数)。显然这是很低效的。很多场景下,新的batch 里只有一小部分数据,但是我们却不得不对所有的数据都进行计算。
正因为上面的问题,所以Spark Streaming 提出了一个新的API mapWithState
,对应的jira为: Improved state management for Spark Streaming。除了我前面提到的性能问题,新的API 还提供两个新的功能:
- 可以为Key 设置TTL(Timeout)
- 用户可以对返回值进行控制
mapWithState(1.6新引入的流式状态管理)的实现
前面我们提到,在新的mapWithState API 中,核心思路是创建一个新的MapWithStateRDD,该RDD的元素是 MapWithStateRDDRecord
,每个MapWithStateRDDRecord 记录某个Partiton下所有key的State。
依然的,你在 org.apache.spark.streaming.dstream.PairDStreamFunctions
可以看到mapWithState 签名。
@Experimental
def mapWithState[StateType: ClassTag, MappedType: ClassTag](
spec: StateSpec[K, V, StateType, MappedType]
): MapWithStateDStream[K, V, StateType, MappedType] = {
new MapWithStateDStreamImpl[K, V, StateType, MappedType](
self,
spec.asInstanceOf[StateSpecImpl[K, V, StateType, MappedType]]
)
}
这一段代码有三点值得注意:
- 该接口在1.6 中还是
Experimental
状态 - 接受的不是一函数,而是一个StateSpec 的对象。
- 返回了一个新的DStream
其实StateSpec 只是一个包裹,你在实际操作上依然是定义一个函数,然后通过StateSpec进行包裹一下。以 wordcount 为例:
val mappingFunc = (word: String, one: Option[Int], state: State[Int]) => {
val sum = one.getOrElse(0) + state.getOption.getOrElse(0)
val output = (word, sum)
state.update(sum)
output
}
接着StateSpec.function(mappingFunc) 包裹一下就可以传递给mapWithState。
我们看到该函数更加清晰,word 是K,one新值,state 是原始值(本batch之前的状态值)。这里你需要把state 更新为新值,该实现是做了一个内部状态维护的,不像updateStateByKey一样,一切都是现算的。
MapWithStateDStreamImpl
的compute逻辑都委托给了 InternalMapWithStateDStream
,最终要得到 MapWithStateRDD
,基本是通过下面的逻辑来计算的:
val prevStateRDD = getOrCompute(validTime - slideDuration) match ...
val dataRDD = parent.getOrCompute(validTime).getOrElse { context.sparkContext.emptyRDD[(K, V)]}
.....
val partitionedDataRDD = dataRDD.partitionBy(partitioner)
Some(new MapWithStateRDD( prevStateRDD, partitionedDataRDD, mappingFunction, validTime, timeoutThresholdTime))
这里有个很重要的操作是对dataRDD进行了partition操作,保证和prevStateRDD 按相同的分区规则进行分区。这个在后面做计算时有用。
获取到prevStateRDD,接着获取当前batch的数据的RDD,最后组装成一个新的MapWithStateRDD。MapWithStateRDD 还接受你定义的函数 mappingFunction
以及key的超时时间。
其中MapWithStateRDD 和别的RDD 不同之处在于RDD里的元素是 MapWithStateRDDRecord
对象。其实prevStateRDD 也是个MapWithStateRDD 。
整个实际计算逻辑都在 MapWithStateRDDRecord.updateRecordWithData
方法里。
前面我们提到,MapWithStateRDDRecord 是prevStateRDD 里的元素。有多少个分区,就有多少个MapWithStateRDDRecord 。一个Record 对应一个分区下所有数据的状态。在 MapWithStateRDDRecord.updateRecordWithData
方法中,第一步是copy 当前record 的状态。这个copy是非常快的。我们会在 mapWithSate额外内容
那个章节有更详细的分析。
val newStateMap = prevRecord.map { _.stateMap.copy() }. getOrElse { new EmptyStateMap[K, S]() } //prevRecord=MapWithStateRDDRecord[K, S, E]
接着定义了两个变量,其中mappedData 会作为最后的计算结果返回,wrappedState 类似Hadoop里的 Text,你可以不断给它赋值,然后获得一些新的功能,避免返回创建对象。它主要是给state添加了一些方法,比如update,define状态等。
val mappedData = new ArrayBuffer[E]
val wrappedState = new StateImpl[S]()
接着遍历当前batch 所有的数据,并且应用用户定义的函数。这里我们看到,我们只对当前batch的数据进行函数计算,而不是针对历史全集数据进行计算,这是一个很大的性能提升点。接着根据wrappedState的状态对newStateMap做更新,主要是删除或者数据的更新。最后将新的结果返回并且放到mappedData 。
dataIterator.foreach { case (key, value) =>
wrappedState.wrap(newStateMap.get(key))
val returned = mappingFunction(batchTime, key, Some(value), wrappedState)
if (wrappedState.isRemoved) {
newStateMap.remove(key)
} else if (wrappedState.isUpdated
|| (wrappedState.exists && timeoutThresholdTime.isDefined)) {
newStateMap.put(key, wrappedState.get(), batchTime.milliseconds)
}
mappedData ++= returned
}
上面这段逻辑,你会发现一个问题,如果dataIterator 里有重复的数据比如某个K 出现多次,则mappedData也会有多次。以wordcount 为例:
输入数据 | mapWithState后的结果 | 调用stateSnapshots后的结果 |
---|---|---|
(hello, 1) | (hello, 1) | (hello, 3) |
(hello, 1) | (hello, 2) | (world, 2) |
(world, 1) | (world, 1) | |
(world, 1) | (world, 2) | |
(hello, 1) | (hello, 3) |
hello 出现了三次,所以会加入到mappedData中三次。其实我没发现这么做的意义,并且我认为会对内存占用造成一定的压力。
如果你想要最后的结果,需要调用完mapWithState 之后需要再调用一次stateSnapshots,就可以拿到第三栏的计算结果了。
经过上面的计算,我们对parentRDD里的每个分区进行计算,得到了mappedData以及newStateMap,这两个对象一起构建出MapWithStateRDDRecord,而该Record 则形成一个Partition,最后构成新的MapWithStateRDD。
mapWithState额外内容
MapWithStateRDDRecord 透过stateMap 维护了某个分区下所有key的当前状态。 在前面的分析中,我们第一步便是clone old stateMap。如果集合非常大,拷贝也是很费时才对,而且还耗费内存。
所以如何实现好stateMap 变得非常重要:
-
实现过程采用的是
增量copy
。也叫deltaMap。 新创建的stateMap 会引用旧的stateMap。新增数据会放到新的stateMap中,而更新,删除,查找等操作则有可能发生在老得stateMap上。
缺点也是有的,如果stateMap 链路太长,则可能会对性能造成一定的影响。我们只要在特定条件下做合并即可。目前是超过DELTA_CHAIN_LENGTH_THRESHOLD=20 时会做合并。 -
使用
org.apache.spark.util.collection.OpenHashMap
,该实现比java.util.HashMap
快5倍,并且占用更少的内存空间。不过该HashMap 无法进行删除操作。
以WordCount例子为切入点,这个例子是从kafka接收数据的,为了方便测试的话直接在sock获取数据即可:
val sparkConf = new SparkConf().setAppName("WordCount").setMaster("local")
val ssc = new StreamingContext(sparkConf, Seconds(10))
ssc.checkpoint("d:\\tmp")
val params = Map("bootstrap.servers" -> "master:9092", "group.id" -> "scala-stream-group")
val topic = Set("test")
val initialRDD = ssc.sparkContext.parallelize(List[(String, Int)]())
val messages = KafkaUtils.createDirectStream[String, String, StringDecoder, StringDecoder](ssc, params, topic)
val word = messages.flatMap(_._2.split(" ")).map { x => (x, 1) }
//自定义mappingFunction,累加单词出现的次数并更新状态
val mappingFunc = (word: String, count: Option[Int], state: State[Int]) => {
val sum = count.getOrElse(0) + state.getOption.getOrElse(0)
val output = (word, sum)
state.update(sum)
output
}
//调用mapWithState进行管理流数据的状态
val stateDstream = word.mapWithState(StateSpec.function(mappingFunc).initialState(initialRDD)).print()
ssc.start()
ssc.awaitTermination()
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19