Hugging Face 被屏蔽
- - 奇客Solidot–传递最新科技情报托管了逾 3.65 万个开源 AI 模型的 Hugging Face 证实其网站在中国被屏蔽,原因未知. Hugging Face 也托管了来自中国科技公司的开源模型. Hugging Face 在一份声明中表示它对中国的法规无能为力. 中国用户早在今年 5 月就在该公司论坛抱怨了访问问题,至少从 9 月 12 日开始,Hugging Face 在中国就完全无法访问.
1.pip install opencv
2.pip install face_recognition
期间在安装依赖包dlib时遇到问题,解决见: http://kissmett.iteye.com/blog/2409857
3.通过摄像头实时在获取的帧上进行人脸识别(较卡顿)
facerecognition.py
# -*- coding: UTF-8 -*- import face_recognition import cv2 import os import ft2 #中文支持,加载微软雅黑字体 ft = ft2.put_chinese_text('msyh.ttf') # 获取摄像头# 0(默认) video_capture = cv2.VideoCapture(0) # 加载待识别人脸图像并识别。 basefacefilespath ="images"#faces文件夹中放待识别任务正面图,文件名为人名,将显示于结果中 baseface_titles=[] #图片名字列表 baseface_face_encodings=[] #识别所需人脸编码结构集 #读取人脸资源 for fn in os.listdir(basefacefilespath): #fn 人脸文件名 baseface_face_encodings.append(face_recognition.face_encodings(face_recognition.load_image_file(basefacefilespath+"/"+fn))[0]) fn=fn[:(len(fn)-4)] baseface_titles.append(fn)# while True: # 获取一帧视频 ret, frame = video_capture.read() # 人脸检测,并获取帧中所有人脸编码 face_locations = face_recognition.face_locations(frame) face_encodings = face_recognition.face_encodings(frame, face_locations) # 遍历帧中所有人脸编码 for (top, right, bottom, left), face_encoding in zip(face_locations, face_encodings): # 与baseface_face_encodings匹配否? for i,v in enumerate(baseface_face_encodings): match = face_recognition.compare_faces([v], face_encoding,tolerance=0.5) name = "?" if match[0]: name = baseface_titles[i] break name=unicode(name,'gb2312')#gbk is also ok. print(name) # 围绕脸的框 cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), 2) # 框下的名字(即,匹配的图片文件名) cv2.rectangle(frame, (left, bottom), (right, bottom+35), (0, 0, 255), cv2.FILLED) frame = ft.draw_text(frame, (left + 2, bottom + 12), name, 16, (255, 255, 255)) # show结果图像 cv2.imshow('Video', frame) # 按q退出 if cv2.waitKey(1) & 0xFF == ord('q'): break # 释放摄像头中的流 video_capture.release() cv2.destroyAllWindows()
ft2.py
# -*- coding: utf-8 -*- import numpy as np import freetype import copy import pdb class put_chinese_text(object): def __init__(self, ttf): self._face = freetype.Face(ttf) def draw_text(self, image, pos, text, text_size, text_color): ''' draw chinese(or not) text with ttf :param image: image(numpy.ndarray) to draw text :param pos: where to draw text :param text: the context, for chinese should be unicode type :param text_size: text size :param text_color:text color :return: image ''' self._face.set_char_size(text_size * 64) metrics = self._face.size ascender = metrics.ascender/64.0 #descender = metrics.descender/64.0 #height = metrics.height/64.0 #linegap = height - ascender + descender ypos = int(ascender) if not isinstance(text, unicode): text = text.decode('utf-8') img = self.draw_string(image, pos[0], pos[1]+ypos, text, text_color) return img def draw_string(self, img, x_pos, y_pos, text, color): ''' draw string :param x_pos: text x-postion on img :param y_pos: text y-postion on img :param text: text (unicode) :param color: text color :return: image ''' prev_char = 0 pen = freetype.Vector() pen.x = x_pos << 6 # div 64 pen.y = y_pos << 6 hscale = 1.0 matrix = freetype.Matrix(int(hscale)*0x10000L, int(0.2*0x10000L),\ int(0.0*0x10000L), int(1.1*0x10000L)) cur_pen = freetype.Vector() pen_translate = freetype.Vector() image = copy.deepcopy(img) for cur_char in text: self._face.set_transform(matrix, pen_translate) self._face.load_char(cur_char) kerning = self._face.get_kerning(prev_char, cur_char) pen.x += kerning.x slot = self._face.glyph bitmap = slot.bitmap cur_pen.x = pen.x cur_pen.y = pen.y - slot.bitmap_top * 64 self.draw_ft_bitmap(image, bitmap, cur_pen, color) pen.x += slot.advance.x prev_char = cur_char return image def draw_ft_bitmap(self, img, bitmap, pen, color): ''' draw each char :param bitmap: bitmap :param pen: pen :param color: pen color e.g.(0,0,255) - red :return: image ''' x_pos = pen.x >> 6 y_pos = pen.y >> 6 cols = bitmap.width rows = bitmap.rows glyph_pixels = bitmap.buffer for row in range(rows): for col in range(cols): if glyph_pixels[row*cols + col] != 0: img[y_pos + row][x_pos + col][0] = color[0] img[y_pos + row][x_pos + col][1] = color[1] img[y_pos + row][x_pos + col][2] = color[2] if __name__ == '__main__': # just for test import cv2 line = '你好' img = np.zeros([300,300,3]) color_ = (0,255,0) # Green pos = (3, 3) text_size = 24 #ft = put_chinese_text('wqy-zenhei.ttc') ft = put_chinese_text('msyh.ttf') image = ft.draw_text(img, pos, line, text_size, color_) cv2.imshow('ss', image) cv2.waitKey(0)
将msyh.ttf 微软雅黑字体文件copy到同级目录,在同级images文件夹下,以人名命名正面脸图.
运行, python facerecognition.py
卡顿,跳帧,
结果如图:
base faces
识别: