机器学习实战之一:一个完整的机器学习项目

标签: jianshu | 发表时间:2018-12-20 00:00 | 作者:
出处:http://itindex.net/relian

一个机器学习项目主要步骤为:

1. 获取数据

  • 使用Pandas加载数据,并返回一个包含所有数据的Pandas DataFrame对象。
   import pandas as pd

def load_housing_data(housing_path=HOUSING_PATH):
    csv_path = os.path.join(housing_path, "housing.csv")
    return pd.read_csv(csv_path)
  • 使用DataFrame的 head()方法查看该数据集的前5行:
    housing.head()
  • 使用 describe()方法展示数值属性的概括:
    housing.describe()
  • 创建测试集(根据收入,进行分层采样):
   from sklearn.model_selection import StratifiedShuffleSplit

split = StratifiedShuffleSplit(n_splits=1, test_size=0.2, random_state=42)

for train_index, test_index in split.split(housing, housing["income_cat"]):
    strat_train_set = housing.loc[train_index]
    strat_test_set = housing.loc[test_index]

2. 发现并可视化数据,发现规律

  • 地理数据的可视化:
   housing.plot(kind="scatter", x="longitude", y="latitude", alpha=0.4,
    s=housing["population"]/100, label="population",
    c="median_house_value", cmap=plt.get_cmap("jet"), colorbar=True,
)
plt.legend()
数据的地理信息散点图
  • 查找关联
    使用 corr()方法计算出每对属性间的标准相关系数(standard correlation coefficient,也称作皮尔逊相关系数):
   >>> corr_matrix = housing.corr()
>>> corr_matrix["median_house_value"].sort_values(ascending=False)#每个属性和房价中位数的关联度
median_house_value    1.000000
median_income         0.687170
total_rooms           0.135231
housing_median_age    0.114220
households            0.064702
total_bedrooms        0.047865
population           -0.026699
longitude            -0.047279
latitude             -0.142826
Name: median_house_value, dtype: float64
  • 尝试不同的属性组合
   >>> housing["rooms_per_household"] = housing["total_rooms"]/housing["households"]
>>> housing["bedrooms_per_room"] = housing["total_bedrooms"]/housing["total_rooms"]
>>> housing["population_per_household"]=housing["population"]/housing["households"]
>>> corr_matrix = housing.corr()
>>> corr_matrix["median_house_value"].sort_values(ascending=False)
median_house_value          1.000000
median_income               0.687170
rooms_per_household         0.199343
total_rooms                 0.135231
housing_median_age          0.114220
households                  0.064702
total_bedrooms              0.047865
population_per_household   -0.021984
population                 -0.026699
longitude                  -0.047279
latitude                   -0.142826
bedrooms_per_room          -0.260070
Name: median_house_value, dtype: float64
#可以看出来,与总房间数或卧室数相比,新的bedrooms_per_room属性与房价中位数的关联更强

3. 数据预处理

  • 处理缺失值
   from sklearn.preprocessing import Imputer

imputer = Imputer(strategy="median")
housing_num = housing.drop("ocean_proximity", axis=1)#创建一份不包括文本属性ocean_proximity的数据副本
imputer.fit(housing_num)
X = imputer.transform(housing_num)
  • 处理文本和类别属性(使用独热编码One-Hot Encoding)
   from sklearn.preprocessing import CategoricalEncoder # in future versions of Scikit-Learn

cat_encoder = CategoricalEncoder()
housing_cat_reshaped = housing_cat.values.reshape(-1, 1)
housing_cat_1hot = cat_encoder.fit_transform(housing_cat_reshaped)
  • 特征缩放
    有两种常见的方法可以让所有的属性有相同的量度:线性函数归一化(Min-Max scaling)和标准化(standardization)。
  • 转换流水线
   from sklearn.pipeline import FeatureUnion

num_attribs = list(housing_num)
cat_attribs = ["ocean_proximity"]

num_pipeline = Pipeline([
        ('selector', DataFrameSelector(num_attribs)),
        ('imputer', Imputer(strategy="median")),
        ('attribs_adder', CombinedAttributesAdder()),
        ('std_scaler', StandardScaler()),
    ])

cat_pipeline = Pipeline([
        ('selector', DataFrameSelector(cat_attribs)),
        ('cat_encoder', CategoricalEncoder(encoding="onehot-dense")),
    ])

full_pipeline = FeatureUnion(transformer_list=[
        ("num_pipeline", num_pipeline),
        ("cat_pipeline", cat_pipeline),
    ])

运行流水线 :

   housing_prepared = full_pipeline.fit_transform(housing)

4. 选择模型,进行训练

  • 线性回归模型
   from sklearn.linear_model import LinearRegression

lin_reg = LinearRegression()
lin_reg.fit(housing_prepared, housing_labels)
  • 决策树模型
   from sklearn.tree import DecisionTreeRegressor

tree_reg = DecisionTreeRegressor()
tree_reg.fit(housing_prepared, housing_labels)
  • 随机森林模型
   from sklearn.ensemble import RandomForestRegressor
forest_reg = RandomForestRegressor()
forest_reg.fit(housing_prepared, housing_labels)

使用 Scikit-Learn 的交叉验证功能---K 折交叉验证(K-fold cross-validation):

   from sklearn.model_selection import cross_val_score
scores = cross_val_score(tree_reg, housing_prepared, housing_labels,
                         scoring="neg_mean_squared_error", cv=10)
rmse_scores = np.sqrt(-scores)

5. 微调模型

  • 网格搜索
   from sklearn.model_selection import GridSearchCV

param_grid = [
    {'n_estimators': [3, 10, 30], 'max_features': [2, 4, 6, 8]},
    {'bootstrap': [False], 'n_estimators': [3, 10], 'max_features': [2, 3, 4]},
  ]

forest_reg = RandomForestRegressor()

grid_search = GridSearchCV(forest_reg, param_grid, cv=5,
                           scoring='neg_mean_squared_error')

grid_search.fit(housing_prepared, housing_labels)
  • 随机搜索

6. 确定最优模型

完整项目代码: 一个完整的机器学习项目

相关 [机器学习 完整 机器学习] 推荐:

机器学习实战之一:一个完整的机器学习项目

- - IT瘾-jianshu
一个机器学习项目主要步骤为:. 使用Pandas加载数据,并返回一个包含所有数据的Pandas. head()方法查看该数据集的前5行:. describe()方法展示数值属性的概括:. 创建测试集(根据收入,进行分层采样):. corr()方法计算出每对属性间的标准相关系数(standard correlation coefficient,也称作皮尔逊相关系数):.

机器学习五步走

- - 我爱机器学习
经常会有人问“我该如何在机器学习方面更进一步,我不知道我接下来要学什么了. 一般我都会给出继续钻研教科书的答案. 每当这时候我都会收到一种大惑不解的表情. 但是进步确实就是持续的练习,保持较强的求知欲,并尽你可能的完成具有挑战性的工作. 因为他是为数不多的几种可以让你真真让你获取坚实知识的媒介. 是的,你可以选择选一门课,注册MOOC,参加一些讨论班.

机器学习之路

- - 我爱机器学习
自从答应简二毛博士将自己的机器学习历程和心得分享给大家至今,转眼间半年已经过去了,感谢简博士分享和开源精神的鼓舞,这也正是本系列关于机器学习介绍博客的动力来源. 之前有些网友,师弟们问我,学习机器学习怎么入手,从看什么书开始. 如果你只愿意看一本书,那么推荐Bishop的PRML,全名Pattern Recognition and Machine Learning. 这本书是机器学习的圣经之作,尤其对于贝叶斯方法,介绍非常完善.

机器学习算法Boosting

- - 标点符
机器学习通常会被分为2大类:监督学习和非监督学习. 在监督学习中,训练数据由输入和期望的输出组成,然后对非训练数据进行预测输出,也就是找出输入x与输出y之间的函数关系F:y = F(x). 根据输出的精确特性又可以分为分类和回归. 分类和回归的区别在于输出变量的类型. 定量输出称为回归,或者说是连续变量预测.

Mahout实现的机器学习算法

- - ITeye博客
使用命令:mahout -h.   在Mahout实现的机器学习算法见下表:. EM聚类(期望最大化聚类). 并行FP Growth算法. 并行化了Watchmaker框架. 非Map-Reduce算法. 扩展了java的Collections类. Mahout最大的优点就是基于hadoop实现,把很多以前运行于单机上的算法,转化为了MapReduce模式,这样大大提升了算法可处理的数据量和处理性能.

国内的机器学习几个人

- - 丕子
转: http://blog.csdn.net/playoffs/article/details/7588597. 推荐几个机器学习和数据挖掘领域相关的中国大牛:. 李航:http://research.microsoft.com/en-us/people/hangli/,是MSRA Web Search and Mining Group高级研究员和主管,主要研究领域是信息检索,自然语言处理和统计学习.

Apache Mahout 0.8 发布,机器学习库

- - 开源中国社区最新新闻
Apache Mahout 0.8 发布了,Apache Mahout 是 Apache Software Foundation (ASF) 开发的一个全新的开源项目,其主要目标是创建一些可伸缩的机器学习算法,供开发人员在 Apache 在许可下免费使用. 该项目已经发展到了它的最二个年头,目前只有一个公共发行版.

Ruby的机器学习项目

- - 阳志平的网志-技术类
作者是辉瑞公司的小牛,可惜烂尾了. 我在改啊改啊,可惜现在是商业项目,暂时不能放出改掉的部分. 对了,顺便做个小广告,去年组织翻译的一本小书:社会网络分析:方法与实践. 已经上市了,感兴趣的可以翻翻:. 社会网络分析:探索关系背后的科学与技术. treat:自然语言处理. 类似于igraph,也是桥接处理nlp.

机器学习该如何入门

- - CSDN博客综合推荐文章
  对于这个问题的解释,说实话我很有压力,因为在分享篇文章之前就有朋友告诉我,这个百度上一搜一大片,还需要你讲吗. 正如同一千个读者眼里有一千个林黛玉一样,我解释的当然是我个人自从读研到工作这么多年对机器学习的学习到应用过程的独特见解.   首先我们看下图了解一下机器学习在AI(Artificial Intelligence 人工智能)领域的地位.

[译] 理解机器学习技术

- - IT瘾-dev
第1讲 理解机器学习技术. 学完本模块的内容,读者将能够:. 讨论机器学习的技术和商业应用. 学完本讲的内容,读者将能够:. 解释各类机器学习方法和算法. “机器学习领域的突破,其价值10倍于微软. 你是否曾经为计算机能够下象棋或者机器人能够完成复杂任务而感到惊奇. 一旦你理解了机器如何学习和适应各种问题、提供合适的解决方案时,这些看上去很复杂的问题实际上相当简单.