MobileNetSSD通过Ncnn前向推理框架在Android端的使用--Cmake编译(目标检测 objection detection)补充篇章(多目标也可以显示) - Che_Hongshu - CSDN博客

标签: | 发表时间:2019-02-01 09:02 | 作者:
出处:https://blog.csdn.net

一、前言

推荐先把下面这两篇看完再来看这补充的一篇

二、需要修改NDK部分代码以及java部分代码即可(下面有具体板块解释修改)

MobileNetssd.cpp文件修改在后面的Detect函数

// public native String Detect(Bitmap bitmap);
JNIEXPORT jfloatArray JNICALL Java_com_example_che_mobilenetssd_1demo_MobileNetssd_Detect(JNIEnv* env, jobject thiz, jobject bitmap)
{
    // ncnn from bitmap
    ncnn::Mat in;
    {
        AndroidBitmapInfo info;
        AndroidBitmap_getInfo(env, bitmap, &info);
//        int origin_w = info.width;
//        int origin_h = info.height;
//        int width = 300;
//        int height = 300;
        int width = info.width;
        int height = info.height;
        if (info.format != ANDROID_BITMAP_FORMAT_RGBA_8888)
            return NULL;

        void* indata;
        AndroidBitmap_lockPixels(env, bitmap, &indata);
        // 把像素转换成data,并指定通道顺序
        // 因为图像预处理每个网络层输入的数据格式不一样一般为300*300 128*128等等所以这类需要一个resize的操作可以在cpp中写,也可以是java读入图片时有个resize操作
//      in = ncnn::Mat::from_pixels_resize((const unsigned char*)indata, ncnn::Mat::PIXEL_RGBA2RGB, origin_w, origin_h, width, height);

        in = ncnn::Mat::from_pixels((const unsigned char*)indata, ncnn::Mat::PIXEL_RGBA2RGB, width, height);

        // 下面一行为debug代码
        //__android_log_print(ANDROID_LOG_DEBUG, "MobilenetssdJniIn", "Mobilenetssd_predict_has_input1, in.w: %d; in.h: %d", in.w, in.h);
        AndroidBitmap_unlockPixels(env, bitmap);
    }

    // ncnn_net
    std::vector<float> cls_scores;
    {
        // 减去均值和乘上比例(这个数据和前面的归一化图片预处理形式一一对应)
        const float mean_vals[3] = {127.5f, 127.5f, 127.5f};
        const float scale[3] = {0.007843f, 0.007843f, 0.007843f};

        in.substract_mean_normalize(mean_vals, scale);// 归一化

        ncnn::Extractor ex = ncnn_net.create_extractor();//前向传播

        // 如果不加密是使用ex.input("data", in);
        // BLOB_data在id.h文件中可见,相当于datainput网络层的id
        ex.input(MobileNetSSD_deploy_param_id::BLOB_data, in);
        //ex.set_num_threads(4); 和上面一样一个对象

        ncnn::Mat out;
        // 如果时不加密是使用ex.extract("prob", out);
        //BLOB_detection_out.h文件中可见,相当于dataout网络层的id,输出检测的结果数据
        ex.extract(MobileNetSSD_deploy_param_id::BLOB_detection_out, out);

        int output_wsize = out.w;
        int output_hsize = out.h;

        //输出整理
        jfloat *output[output_wsize * output_hsize];   // float类型
        for(int i = 0; i< out.h; i++) {
            for (int j = 0; j < out.w; j++) {
                output[i*output_wsize + j] = &out.row(i)[j];
            }
        }
        //建立float数组 长度为 output_wsize * output_hsize,如果只是ouput_size相当于只有一行的out的数据那就是一个object检测数据
        jfloatArray jOutputData = env->NewFloatArray(output_wsize * output_hsize);
        if (jOutputData == nullptr) return nullptr;
        env->SetFloatArrayRegion(jOutputData, 0,  output_wsize * output_hsize,
                                 reinterpret_cast<const jfloat *>(*output));
        return jOutputData;
    }
}
   

MainActivity.java修改后后为

package com.example.che.mobilenetssd_demo;

import android.Manifest;
import android.app.Activity;
import android.content.Intent;
import android.content.pm.PackageManager;
import android.content.res.AssetManager;
import android.graphics.Bitmap;
import android.graphics.Canvas;
import android.graphics.Color;
import android.graphics.Paint;
import android.net.Uri;
import android.support.annotation.NonNull;
import android.support.annotation.Nullable;
import android.support.v4.app.ActivityCompat;
import android.support.v4.content.ContextCompat;
import android.support.v7.app.AppCompatActivity;
import android.os.Bundle;
import android.text.method.ScrollingMovementMethod;
import android.util.Log;
import android.view.View;
import android.widget.Button;
import android.widget.ImageView;
import android.widget.TextView;
import android.widget.Toast;

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;


import com.bumptech.glide.Glide;
import com.bumptech.glide.load.engine.DiskCacheStrategy;
import com.bumptech.glide.request.RequestOptions;


public class MainActivity extends AppCompatActivity {

    private static final String TAG = MainActivity.class.getName();
    private static final int USE_PHOTO = 1001;
    private String camera_image_path;
    private ImageView show_image;
    private TextView result_text;
    private boolean load_result = false;
    private int[] ddims = {1, 3, 300, 300}; //这里的维度的值要和train model的input 一一对应
    private int model_index = 1;
    private List<String> resultLabel = new ArrayList<>();
    private MobileNetssd mobileNetssd = new MobileNetssd(); //java接口实例化 下面直接利用java函数调用NDK c++函数

    @Override
    protected void onCreate(Bundle savedInstanceState) {
        super.onCreate(savedInstanceState);
        setContentView(R.layout.activity_main);
        try
        {
            initMobileNetSSD();
        } catch (IOException e) {
            Log.e("MainActivity", "initMobileNetSSD error");
        }
        init_view();
        readCacheLabelFromLocalFile();
}

    /**
     *
     * MobileNetssd初始化,也就是把model文件进行加载
     */
    private void initMobileNetSSD() throws IOException {
        byte[] param = null;
        byte[] bin = null;
        {
            //用io流读取二进制文件,最后存入到byte[]数组中
            InputStream assetsInputStream = getAssets().open("MobileNetSSD_deploy.param.bin");// param:  网络结构文件
            int available = assetsInputStream.available();
            param = new byte[available];
            int byteCode = assetsInputStream.read(param);
            assetsInputStream.close();
        }
        {
            //用io流读取二进制文件,最后存入到byte上,转换为int型
            InputStream assetsInputStream = getAssets().open("MobileNetSSD_deploy.bin");//bin:   model文件
            int available = assetsInputStream.available();
            bin = new byte[available];
            int byteCode = assetsInputStream.read(bin);
            assetsInputStream.close();
        }

        load_result = mobileNetssd.Init(param, bin);// 再将文件传入java的NDK接口(c++ 代码中的init接口 )
        Log.d("load model", "MobileNetSSD_load_model_result:" + load_result);
    }


    // initialize view
    private void init_view() {
        request_permissions();
        show_image = (ImageView) findViewById(R.id.show_image);
        result_text = (TextView) findViewById(R.id.result_text);
        result_text.setMovementMethod(ScrollingMovementMethod.getInstance());
        Button use_photo = (Button) findViewById(R.id.use_photo);
        // use photo click
        use_photo.setOnClickListener(new View.OnClickListener() {
            @Override
            public void onClick(View view) {
                if (!load_result) {
                    Toast.makeText(MainActivity.this, "never load model", Toast.LENGTH_SHORT).show();
                    return;
                }
                PhotoUtil.use_photo(MainActivity.this, USE_PHOTO);
            }
        });
    }

    // load label's name
    private void readCacheLabelFromLocalFile() {
        try {
            AssetManager assetManager = getApplicationContext().getAssets();
            BufferedReader reader = new BufferedReader(new InputStreamReader(assetManager.open("words.txt")));//这里是label的文件
            String readLine = null;
            while ((readLine = reader.readLine()) != null) {
                resultLabel.add(readLine);
            }
            reader.close();
        } catch (Exception e) {
            Log.e("labelCache", "error " + e);
        }
    }


    protected void onActivityResult(int requestCode, int resultCode, @Nullable Intent data) {
        String image_path;
        RequestOptions options = new RequestOptions().skipMemoryCache(true).diskCacheStrategy(DiskCacheStrategy.NONE);
        if (resultCode == Activity.RESULT_OK) {
            switch (requestCode) {
                case USE_PHOTO:
                    if (data == null) {
                        Log.w(TAG, "user photo data is null");
                        return;
                    }
                    Uri image_uri = data.getData();

                    //Glide.with(MainActivity.this).load(image_uri).apply(options).into(show_image);

                    // get image path from uri
                    image_path = PhotoUtil.get_path_from_URI(MainActivity.this, image_uri);
                    // predict image
                    predict_image(image_path);
                    break;
            }
        }
    }

    //  predict image
    private void predict_image(String image_path) {
        // picture to float array
        Bitmap bmp = PhotoUtil.getScaleBitmap(image_path);
        Bitmap rgba = bmp.copy(Bitmap.Config.ARGB_8888, true);
        // resize
        Bitmap input_bmp = Bitmap.createScaledBitmap(rgba, ddims[2], ddims[3], false);
        try {
            // Data format conversion takes too long
            // Log.d("inputData", Arrays.toString(inputData));
            long start = System.currentTimeMillis();
            // get predict result
            float[] result = mobileNetssd.Detect(input_bmp);
            // time end
            long end = System.currentTimeMillis();
            Log.d(TAG, "origin predict result:" + Arrays.toString(result));
            long time = end - start;
            Log.d("result length", "length of result: " + String.valueOf(result.length));
            // show predict result and time
            // float[] r = get_max_result(result);

            String show_text = "result:" + Arrays.toString(result) + "\nname:" + resultLabel.get((int) result[0]) + "\nprobability:" + result[1] + "\ntime:" + time + "ms" ;
            result_text.setText(show_text);

            // 画布配置
            Canvas canvas = new Canvas(rgba);
            //图像上画矩形
            Paint paint = new Paint();
            paint.setColor(Color.RED);
            paint.setStyle(Paint.Style.STROKE);//不填充
            paint.setStrokeWidth(5); //线的宽度


            float get_finalresult[][] = TwoArry(result);
            Log.d("zhuanhuan",get_finalresult+"");
            int object_num = 0;
            int num = result.length/6;// number of object
            //continue to draw rect
            for(object_num = 0; object_num < num; object_num++){
                Log.d(TAG, "haha :" + Arrays.toString(get_finalresult));
                // 画框
                paint.setColor(Color.RED);
                paint.setStyle(Paint.Style.STROKE);//不填充
                paint.setStrokeWidth(5); //线的宽度
                canvas.drawRect(get_finalresult[object_num][2] * rgba.getWidth(), get_finalresult[object_num][3] * rgba.getHeight(),
                        get_finalresult[object_num][4] * rgba.getWidth(), get_finalresult[object_num][5] * rgba.getHeight(), paint);

                paint.setColor(Color.YELLOW);
                paint.setStyle(Paint.Style.FILL);//不填充
                paint.setStrokeWidth(1); //线的宽度
                canvas.drawText(resultLabel.get((int) get_finalresult[object_num][0]) + "\n" + get_finalresult[object_num][1],
                        get_finalresult[object_num][2]*rgba.getWidth(),get_finalresult[object_num][3]*rgba.getHeight(),paint);
            }

            show_image.setImageBitmap(rgba);


        } catch (Exception e) {
            e.printStackTrace();
        }
    }

    //一维数组转化为二维数组(自己新写的)
    public static float[][] TwoArry(float[] inputfloat){
        int n = inputfloat.length;
        int num = inputfloat.length/6;
        float[][] outputfloat = new float[num][6];
        int k = 0;
        for(int i = 0; i < num ; i++)
        {
            int j = 0;

            while(j<6)
            {
                outputfloat[i][j] =  inputfloat[k];
                k++;
                j++;
            }

        }

        return outputfloat;
    }

    /*
    // get max probability label
    private float[] get_max_result(float[] result) {
        int num_rs = result.length / 6;
        float maxProp = result[1];
        int maxI = 0;
        for(int i = 1; i<num_rs;i++){
            if(maxProp<result[i*6+1]){
                maxProp = result[i*6+1];
                maxI = i;
            }
        }
        float[] ret = {0,0,0,0,0,0};
        for(int j=0;j<6;j++){
            ret[j] = result[maxI*6 + j];
        }
        return ret;
    }
    */
    // request permissions(add)
    private void request_permissions() {
        List<String> permissionList = new ArrayList<>();
        if (ContextCompat.checkSelfPermission(this, Manifest.permission.CAMERA) != PackageManager.PERMISSION_GRANTED) {
            permissionList.add(Manifest.permission.CAMERA);
        }
        if (ContextCompat.checkSelfPermission(this, Manifest.permission.WRITE_EXTERNAL_STORAGE) != PackageManager.PERMISSION_GRANTED) {
            permissionList.add(Manifest.permission.WRITE_EXTERNAL_STORAGE);
        }
        if (ContextCompat.checkSelfPermission(this, Manifest.permission.READ_EXTERNAL_STORAGE) != PackageManager.PERMISSION_GRANTED) {
            permissionList.add(Manifest.permission.READ_EXTERNAL_STORAGE);
        }
        // if list is not empty will request permissions
        if (!permissionList.isEmpty()) {
            ActivityCompat.requestPermissions(this, permissionList.toArray(new String[permissionList.size()]), 1);
        }
    }

    @Override
    public void onRequestPermissionsResult(int requestCode, @NonNull String[] permissions, @NonNull int[] grantResults) {
        super.onRequestPermissionsResult(requestCode, permissions, grantResults);
        switch (requestCode) {
            case 1:
                if (grantResults.length > 0) {
                    for (int i = 0; i < grantResults.length; i++) {
                        int grantResult = grantResults[i];
                        if (grantResult == PackageManager.PERMISSION_DENIED) {
                            String s = permissions[i];
                            Toast.makeText(this, s + "permission was denied", Toast.LENGTH_SHORT).show();
                        }
                    }
                }
                break;
        }
    }



}
   

三、运行结果

在这里插入图片描述 在这里插入图片描述 在这里插入图片描述

具体解释

.cpp端不需要过多解释给出的代码有相应的注释
.java中需要解释一些
首先通过前向推理最后输出的数据格式为
6位, label+概率(置信度)+左+上+右+下
当然最后你可以在上图中也发现为小数,其实他是为对应的长或宽的比例
比如上图result 中的现实的数据前六位
13.0 0.99939597 0.40525293 0.18877083 0.839892715 0.943314

  • 13.0就是对应所有label之前在label文件中定义过的,0为backgroud以此列推
  • 0.999就为概率
  • 0.4则为对应 宽长×0.4的位置
  • 0.188 则对应于 高长×0.188的位置
  • 以此列推,这个时候再对应于前面的代码做一下消化就没问题了
  • 所以处理这种数据首先需要每6个做一下区分,所以也就有了下面我自己写的 public static float[][] TwoArry(float[] inputfloat)函数,回过头看一下一切舒服了
    这边我又加入了一些颜色和框的粗细的改变以及框的旁边的txt文本label的添加

代码地址

已在我的github上,希望大家给个star follow
https://github.com/chehongshu/ncnnforandroid_objectiondetection_Mobilenetssd/tree/master/MobileNetSSD_demo

相关 [mobilenetssd ncnn 推理] 推荐:

MobileNetSSD通过Ncnn前向推理框架在Android端的使用--Cmake编译(目标检测 objection detection)补充篇章(多目标也可以显示) - Che_Hongshu - CSDN博客

- -
安装win10+linux-Ubuntu16.04的双系统(超细致). ubuntu16.04+caffe+CUDA10.0+cudnn7.4+opencv2.4.9.1+python2.7 (超超细致). Caffe_ssd安装以及利用VOC2012,VOC2007数据集测试VGG_SSD网络. Caffe实现MobileNetSSD以及各个文件的具体解释,利用自己的数据集dataset训练MobileNetSSD建立模型.

GitHub - Tencent/ncnn: ncnn is a high-performance neural network inference framework optimized for the mobile platform

- -
ncnn 是一个为手机端极致优化的高性能神经网络前向计算框架. ncnn 从设计之初深刻考虑手机端的部署和使用. 无第三方依赖,跨平台,手机端 cpu 的速度快于目前所有已知的开源框架. 基于 ncnn,开发者能够将深度学习算法轻松移植到手机端高效执行,开发出人工智能 APP,将 AI 带到你的指尖.

树莓派NCNN环境搭建 | 异构 AI

- -
前言镜像已经做好了,传到百度网盘中了(请大家及时保存,不定期删除. https://pan.baidu.com/s/1fhiX86L8iL8tsLbsiVa6Wg密码: e64s. SD卡要求:至少16GB,板卡型号为树莓派3B+(其他型号未知). 本系列教程采用树莓派3B+开发板:. 1.4GHz 64位4核 ARM Cortex-A53 CPU.

Ncnn使用详解(2)——Android端 - DmrfCoder的博客 - CSDN博客

- -
本片文章基于你已经完成了 这篇文章的学习,主要介绍如何将写好的c代码应用到Android项目中. 系统:Ubuntu16.04 . 软件:Android Studio. 前期准备之 ndk安装. 在正式开始前我们需要先下载安装ndk,这里介绍一种简单高效的方式,打开Android Studio,然后依次点击File->Settings->Appearance&Behavior->System Settings->Android SDK,然后在SDK Tools下找到ndk,然后选中,点击apply就可以自动下载安装了,如图: .

基于insightface训练mobilefacenet的相关步骤及ncnn转换流程

- -
经多位网友的共同实验,原方案部分情况下迭代次数稍微不足,导致最终识别率略有小差异,为了相对容易获得论文的最佳结果,对训练方案进行简单更新,实际训练也可根据数据acc训练是否已稳定来判断lr下降的迭代次数:. 适当增大softmax迭代次数,4万-->12万;. 增大arcface第一级lr0.1的迭代次数,8万-->12万;.

Windows下编译ncnn的android端的库 - 迷若烟雨的专栏 - CSDN博客

- -
ncnn是腾讯开源的一个为手机端极致优化的高性能神经网络前向计算框架,目前已在腾讯多款应用中使用. 由于开发者使用的是linux类似的环境,因此只提供了build.sh用来构建android和iOS的库,但好在提供了CMakelist.txt文件,我们可以借助CMake进行跨平台的交叉编译. 将以下代码存为build.bat文件,双击执行即可.

MTCNN人脸及特征点检测--基于树莓派3B+及ncnn架构 - yuanlulu的博客 - CSDN博客

- -
本文尝试在树莓派3B+上用ncnn框架测试MTCNN. ncnn的基本编译和使用请参考《. 在树莓派3B+上编译ncnn并用benchmark和mobilenet_yolo测试》. mtcn-ncnn项目中下载mtcnn子目录,把这个目录放在最新的ncnn源码目录下. 修改ncnn最顶层的CMakeList.txt,增加对mtcnn的支持.

ncnn 载入insightface训练好的性别年龄识别模型 - sinat_31425585的博客 - CSDN博客

- -
从insightface项目中下载mxnet模型:. 2、使用ncnn的模型转换工具mxnet2ncnn进行模型转换.

在Android手机上使用腾讯的ncnn实现图像分类 - 夜雨飘零 - CSDN博客

- -
在之前笔者有介绍过《在Android设备上使用PaddleMobile实现图像分类》,使用的框架是百度开源的PaddleMobile. 在本章中,笔者将会介绍使用腾讯的开源手机深度学习框架ncnn来实现在Android手机实现图像分类,这个框架开源时间比较长,相对稳定很多. ncnn的GitHub地址:https://github.com/Tencent/ncnn.

电车旅情推理剧!(咦?)《痴汉电车 下着检查》

- 葬月 - 怪奇文芸見世物小屋
自从漫画开始以后BLOG就理所当然似的没有更新了,不过凭着气力还是努力想把漫画尽快画完来继续BLOG,因此虽然质量比较悲伤但是速度还是让自己挺满意的说. 然后因为中途又经历了一次现实中的搬家的缘故,漫画的更新也停下来了. 然后虽然很突然,不过CHA研决定5月要一个人乘火车去旅行的说. 因此BLOG也好漫画也好,这一次就是处于真真正正完完全全的…….