从银行业务员转行AI工程师,我经历了什么

标签: 人工智能开发者 | 发表时间:2020-01-04 20:22 | 作者:
出处:https://www.leiphone.com

Jakub Kriz 发布在 Unsplash 上的照片

两年前,我大学毕业。由于我的专业是经济学和金融学,因此我准备从事金融业。投资银行和全球市场——这些都是我梦寐以求的工作。在毕业前 9 个月,我在一家投资银行谋到了一个职位,我感到很自豪,因为那家银行非常难进,如果没有在那家银行实习过,通常是很难通过面试的。

工作几个月后,我学会了 Excel VBA,并学会了如何使用 Tableau、Power BI 和 UiPath(一个机器人自动化软件)。我意识到我更感兴趣的是学习这些工具和代码,而不是学习银行产品。银行产品曾一度因其复杂性而引起我的兴趣,现在却被视为银行从客户身上赚取利润的一种方式。

另外,银行业的工作环境和我的个人价值观差异很大,这对我来说是一个巨大的挑战。

在这个时候,我的一位同事带我看到了「机器学习」的世界。一个人可以「预测」到哪些投入会产生怎样的结果,这让我非常感兴趣。

但有一个问题:我对于编程了解的不是很多。在我的字典里,Python 是一种蛇,而 Pig 是......一头猪。

两年后的今天,我即将进入人工智能行业,成为一名 AI 工程师。这段经历并不容易,时间也不短。对我来说,向人工智能产业的转型仅仅是一个开始——对我来说,这是一个学习和成长的新起点。本文就是我的经历。

免责声明

每个人的数据科学之旅都是不同的。这篇文章不是关于「如何学会人工智能」的,不应该被看作是一个循序渐进的指南。这只是我个人的经历,我希望能激励人们去做他们想做的事,因为生命太短了,不能活得没有意义。

我的旅程

加入 MOOC 课程学习

虽然有经济和金融背景,但我不知道如何编码。Excel VBA 和编码很接近,但也只是相似。作为一个优秀的人,为了进入数据科学的行业,我报名参加了 MOOC 上的一些大规模的在线开放课程。以下是我报名参加的课程清单:

  • Python BootCamp: Go from zero to hero in Python 3 [Udemy]

  • Python for Data Science and Machine Learning Bootcamp [Udemy]

  • Managing Big Data with MySQL [Coursera]

  • Java Tutorial for Beginners [Udemy]

  • The Web Developer Bootcamp [Udemy]

  • Machine Learning A-Z: Hands-On Python & R in Data Science [Udemy]

  • Deploy Machine Learning & NLP Models with Docker [Udemy]

但是,除了加粗的部分,大部分课程我都没有完成。由于获得知识太容易了,我陷入了恶性循环,我很自然而然地在一门课程没有学完的时候转到另一门课,并且兴趣转瞬即逝。

对我来说,这是 MOOC 最大的缺点——内容的简洁性。或者,我最初的期望是 MOOC 可以推动我从事数据科学的职业,这可能太天真了。

为了让人印象深刻,一个教授传统机器学习(ML)方法的典型 MOOC 课程通常会略过诸如模型实际是做什么的这种基础知识。你会学到随机森林是决策树的集合,但不会学到决策树是如何决定在哪个分支(即熵的概念和数学原理)上选择哪些特征不被覆盖。支持向量机只是作为一种分类方法来教,但如何确定超平面将不包括在课程内。

「我知道的」和「我需要知道的」之间的这种差异在我学习人工智能的更高级领域(如深度学习)时得到了证明。教授深度学习的 MOOC 课程经常在 Tensorflow 中向 MNIST 这样一个好的数据集抛出一堆代码,并告诉你,你现在是一个深度学习专家了。这显然与现实相去甚远,因为论文通常包括复杂的体系结构,其中涉及到深度神经网络模型中特征提取的理解,以及其他更复杂的特征,如 transformer 和双向编码。理解最先进的模型相比其他模型的优势在哪里,这一点也很重要,同时迁移学习和元学习等概念也是很重要的。

在我看来,MOOC 课程常常给人一种错觉,即任何人都可以成为 ML 实践者。它可能会让初学者觉得,ML 只是涉及 .fit()和 .predict()的几行代码,这是因为 MOOC 为了让人们可以相对轻松地开始使用 ML(也许由于 ML 相关的大量宣传,将这些课程货币化及其有利可图)而以这些作为教学材料。

别误会我的意思,MOOC 课程很好,它为人们提供了一种快速而简单的方式来获取知识并开始某个话题。但是,它们会让你成为专家吗?显然不能。你在完成课程后做什么,将决定你是否成为专家。

学习更多技能

在完成了几次 MOOC 课程之后,我知道自己还是什么都不会。当然,我知道了 Python 中的一些基本技能,知道如何使用 sci kit 从.fit()和.predict()。

为了提高我的编程技能,我在 Hackerrank 上练习并完成了 SQL 和 Python 相关的题目。同时,我希望有一个真实的 Python 项目。就在那时,我开始研究一种可以为我预订羽毛球场的机器人。这个项目主要包括使用 Selenium 与浏览器交互、浏览网页、最终下单并支付羽毛球场的费用。其动机是,新加坡的羽毛球场通常提前两周就预订满了,很多人每天都会在发售时间在预订网站扎营,而羽毛球场通常在一两秒钟内就被预定完了。

尽管我对用 Python 编写代码有信心,但我对代码效率一无所知。时间和空间复杂度对我来说完全是陌生的。面向对象编程在我的脑海中是一个从未有过的概念。

在 ML 方面,我是 Jupyter notebook 的专家。我可以将我的 Jupyter notebook 的主题改为「黑暗模式」,并熟练使用所有的快捷键。显然,我已经准备好担当数据科学家的角色。

然而,我在面试中惨败。在进入「数据科学」领域之前,涉及到代码的测试就已经将我拒之门外了。我申请了技术分析师的职位,但被推荐到另一个部门,因为他们觉得我更适合做业务分析师。

我离我该去的地方很远。

课堂学习远远不够

为了深入了解 ML 并磨练我在 Python 方面的技能,我决定在 Singapore Management University 攻读 AI 专业的 IT 商业硕士。

我学习了传统 ML 模型背后的数学知识,并在一个数据集上应用了最先进的深度学习架构。我学习了一些关于人工智能的重要概念,包括常用的搜索算法、Q-学习和深度 Q-学习。我了解了算法设计,包括图形算法、时间和空间复杂度、名称匹配算法以及更多的算法,它们刷新了我的认知。从本质上讲,这门课程为我提供了 MOOC 所缺乏的学术严谨性。

在这个时候,我手上有几个项目。它们不是成熟的项目,其数据集通常是从 Kaggle 获得的。深度学习模型在 Docker 上运行是为了保持一致性,但从来没有考虑到部署的任何方面。毕竟,他们是学校的项目。

在我看来,硕士阶段的学习为人工智能专业人士提供了必要的学术严谨性,但缺乏实际应用方面的知识。硕士课程不会告诉你什么是获得数据科学工作的必要条件,你必须自己去弄清楚。软件工程和开发技能通常是数据科学家工作范围的一部分(尽管不全面)。代码的协作在大型组织中也很重要。因此,了解如何设置 Docker 环境、启动 AWS EC2 实例、在 Azure blob 存储上托管数据集、高效地组织代码以及使用 GitHub 或 GitLab 进行版本控制,是一些需要的关键技能,但课堂上没有讲授。

去尝试吧,即使你觉得自己不够好。

我继续面试,尽管大多数面试都不及格,但我积累了大量技术面试和非技术面试的经验。它们让我知道了自己的知识漏洞,我花时间学习了这些技能。更重要的是,它让我了解了不同类型的工作内容,不同的公司对同一个职位的要求是什么。

两年后,我得到了一个 AI 工程师的职位。对我来说,这是一个很好的机会,我可以在一个我热爱的领域学习和成长。更重要的是,我的经历证明了任何人都可以完成他们打算做的事情,尽管有些人可能需要比其他人花更长的时间。

归根结底,职业生涯是一场马拉松,而不是短期冲刺。做你喜欢做的事,因为你将花费一生中很大一部分的时间工作。

如果你感到迷茫,记住 Elsa 所说的话:做下一件正确的事。

via: https://towardsdatascience.com/i-had-no-idea-how-to-write-code-two-years-ago-now-im-an-ai-engineer-13c530ab8227

雷锋网雷锋网雷锋网

相关 [银行 业务 ai] 推荐:

从银行业务员转行AI工程师,我经历了什么

- - 雷锋网
Jakub Kriz 发布在 Unsplash 上的照片. 由于我的专业是经济学和金融学,因此我准备从事金融业. 投资银行和全球市场——这些都是我梦寐以求的工作. 在毕业前 9 个月,我在一家投资银行谋到了一个职位,我感到很自豪,因为那家银行非常难进,如果没有在那家银行实习过,通常是很难通过面试的.

招商银行AI全布局

- - 雷锋网
“科技是唯一可能颠覆商业银行经营模式的力量. ”招商银行行长田惠宇将这段话,镌刻在2019年招行年报中,至今熠熠发光. 田惠宇十分重视金融科技的发展. 在招行2019年年度报告两千多字的“行长致辞”中,他总共提起了6次「科技」、9次「转型」、14次「数字化」. 从2013年任职至今,田惠宇一直推动着招商银行在科技的道路上“狂奔”.

AI vs AI--当AI与自己聊天

- Tim - Solidot
Shawn the R0ck 写道 "最烦人的事情之一莫过于被强迫与一个白痴对话. 但当你发现你最讨厌与之交谈的白痴其实就是你自己的基于人工智能程序的拷贝...康奈尔创造性机器实验室决定看看当AI尝试跟自己交谈会发生什么. 他们的健谈的AI程序Cleverbot与自己进行文本交互,之后朗读出文本并且显示到视频中.

Seata 在蚂蚁国际银行业务的落地实践

- - 掘金 架构
文|李乔(花名:南桥)、李宗杰(花名:白鹰). 李乔:蚂蚁集团高级开发工程师,负责蚂蚁境外银行支付结算系统开发. 李宗杰:蚂蚁集团技术专家,负责蚂蚁分布式事务中间件研发. 本文 11580 字 阅读 25 分钟. 蚂蚁国际境外银行业务正在部分迁移至阿里云,原内部使用的 SOFA 技术栈无法在阿里云上得到支持.

从业务架构视角聊聊大型商业银行的转型实践

- - InfoQ推荐
随着云计算、大数据、区块链和AI以及移动互联等新一代信息技术的发展,企业数字化转型加速. 市场在变,需求也在变,面对高度创新和充满不确定性的敏态业务,为快速交付高质量的软件产品或服务,企业需要有更好的业务架构设计,去适应不同阶段的业务特性. 企业的业务架构设计需要考虑哪些因素. 业务架构设计的难点和挑战是什么.

银行业务中台这么搞,新产品上线提速60%

- -
开始正题之前,首先要讨论下什么是中台. 按网上搜集到的信息,有些人说中台是技术中台,像微服务开发框架、Devops平台、PaaS平台,容器云之类的;有些人说中台就是微服务业务平台,像最常见的什么用户中心、订单中心,各种微服务集散地,叫做”业务中台“;还有人说中台是组织的事情,组织架构有调整的话, 也可以叫”组织中台“;也有人说中台是一种思想,一种体系,可以快速聚合后台的数据与能力.

一家公司的 AI 教育观:AI 管「教」,真人来「育」

- - 极客公园
叮咚课堂 App 上线不过八个月,他们一面竭力在竞争异常激烈的在线少儿英语赛道上保持着刻意的低调,一面又疯狂地收获了平均 300% 月度的用户增长率. 这让他们创始人邱明丰对未来信心更盛了. 在艾瑞咨询发布的《2018 年中国在线幼儿启蒙英语行业白皮书》中提到,近年来人工智能在互联网教育领域大规模展开,但在在线幼儿启蒙英语教育中的应用甚少,随着资本的注入和行业的发展,其有望通过人工智能进一步提升用户在线启蒙英语学习的体验和效率.

分布式数据库在光大银行关键业务系统的应用探索

- - InfoQ推荐
近十年,我和我的团队一直负责光大银行总行的数据库运维,这里面既包括交易型数据库,也包括 MPP,还有 Hadoop 这样的大数据运维. 在运维的过程中,我们一直也在思考现在的数据库有哪些问题、面临哪些风险、数据库技术的发展趋势是什么,这一点是很重要的,因为它决定了我们为什么要转向分布式,我们希望分布式能替我们解决哪些问题,它能够解决哪些问题和它不能够解决哪些问题.

贪吃蛇AI挑战赛第二季

- 温柔一刀 - 黑客志
如果你对这个活动感兴趣,可以先从这里开始,编写一个AI程序,然后将你的AI程序以及你对平台的改进建议发送到jin.cai20#gmail.com,主办方将会从中选择12名选手参加6月24到25持续一个周末的编程派对,并提供往返交通及住宿费用,下面是活动的详情:. 时间: June 24th – June 26th *.

AI 政策引发失业担忧

- - 最新更新 – Solidot
政府智库——中国发展研究基金会和红杉中国的报告 显示,中国出口制造业省份浙江、江苏和广东的几家公司在这三年内因自动化削减了 30% 至 40% 的劳动力. 北京正在实施雄心勃勃的政策以升级制造技术. 官方媒体对包括人工智能领域在内的政府发展目标的报道都集中在积极因素上. 然而,有关当局悄然对此类政策导致的裁员表示了担忧.