Hive优化之小文件问题及其解决方案_lavimer-CSDN博客

标签: | 发表时间:2021-04-14 16:18 | 作者:
出处:https://blog.csdn.net

小文件是如何产生的

1.动态分区插入数据,产生大量的小文件,从而导致map数量剧增。

2.reduce数量越多,小文件也越多(reduce的个数和输出文件是对应的)。

3.数据源本身就包含大量的小文件。


小文件问题的影响

1.从Hive的角度看,小文件会开很多map,一个map开一个JVM去执行,所以这些任务的初始化,启动,执行会浪费大量的资源,严重影响性能。

2.在HDFS中,每个小文件对象约占150byte,如果小文件过多会占用大量内存。这样NameNode内存容量严重制约了集群的扩展。


小文件问题的解决方案

从小文件产生的途经就可以从源头上控制小文件数量,方法如下:

1.使用Sequencefile作为表存储格式,不要用textfile,在一定程度上可以减少小文件。

2.减少reduce的数量(可以使用参数进行控制)。

3.少用动态分区,用时记得按distribute by分区。


对于已有的小文件,我们可以通过以下几种方案解决:

1.使用hadoop archive命令把小文件进行归档。

2.重建表,建表时减少reduce数量。

3.通过参数进行调节,设置map/reduce端的相关参数,如下:

设置map输入合并小文件的相关参数:

      //每个Map最大输入大小(这个值决定了合并后文件的数量)
set mapred.max.split.size=256000000;  
//一个节点上split的至少的大小(这个值决定了多个DataNode上的文件是否需要合并)
set mapred.min.split.size.per.node=100000000;
//一个交换机下split的至少的大小(这个值决定了多个交换机上的文件是否需要合并)  
set mapred.min.split.size.per.rack=100000000;
//执行Map前进行小文件合并
set hive.input.format=org.apache.hadoop.hive.ql.io.CombineHiveInputFormat;

设置map输出和reduce输出进行合并的相关参数:

      //设置map端输出进行合并,默认为true
set hive.merge.mapfiles = true
//设置reduce端输出进行合并,默认为false
set hive.merge.mapredfiles = true
//设置合并文件的大小
set hive.merge.size.per.task = 256*1000*1000
//当输出文件的平均大小小于该值时,启动一个独立的MapReduce任务进行文件merge。
set hive.merge.smallfiles.avgsize=16000000


相关 [hive 优化 文件] 推荐:

hive 优化 tips

- - CSDN博客推荐文章
一、     Hive join优化. 也可以显示声明进行map join:特别适用于小表join大表的时候,SELECT /*+ MAPJOIN(b) */ a.key, a.value FROM a join b on a.key = b.key. 2.     注意带表分区的join, 如:.

hive优化(2)

- - 开源软件 - ITeye博客
Hive是将符合SQL语法的字符串解析生成可以在Hadoop上执行的MapReduce的工具. 使用Hive尽量按照分布式计算的一些特点来设计sql,和传统关系型数据库有区别,. 所以需要去掉原有关系型数据库下开发的一些固有思维. 1:尽量尽早地过滤数据,减少每个阶段的数据量,对于分区表要加分区,同时只选择需要使用到的字段.

hive优化

- - 开源软件 - ITeye博客
hive.optimize.cp=true:列裁剪. hive.optimize.prunner:分区裁剪. hive.limit.optimize.enable=true:优化LIMIT n语句. hive.limit.optimize.limit.file=10:最大文件数.   1.job的输入数据大小必须小于参数:hive.exec.mode.local.auto.inputbytes.max(默认128MB).

Hive优化

- - 互联网 - ITeye博客
     使用Hive有一段时间了,目前发现需要进行优化的较多出现在出现join、distinct的情况下,而且一般都是reduce过程较慢.      Reduce过程比较慢的现象又可以分为两类:. 情形一:map已经达到100%,而reduce阶段一直是99%,属于数据倾斜. 情形二:使用了count(distinct)或者group by的操作,现象是reduce有进度但是进度缓慢,31%-32%-34%...一个附带的提示是使用reduce个数很可能是1.

hive优化

- - 互联网 - ITeye博客
1:尽量尽早地过滤数据,减少每个阶段的数据量,对于分区表要加分区,同时只选择需要使用到的字段. 2:尽量原子化操作,尽量避免一个SQL包含复杂逻辑. 可以使用中间表来完成复杂的逻辑. 3:单个SQL所起的JOB个数尽量控制在5个以下. 4:慎重使用mapjoin,一般行数小于2000行,大小小于1M(扩容后可以适当放大)的表才能使用,小表要注意放在join的左边(目前TCL里面很多都小表放在join的右边).

Hive优化总结

- - 淘剑笑的博客
优化时,把hive sql 当做map reduce 程序来读,会有意想不到的惊喜. 理解hadoop 的核心能力,是hive 优化的根本. 这是这一年来,项目组所有成员宝贵的经验总结. 长期观察hadoop处理数据的过程,有几个显著的特征 :. 1.不怕数据多,就怕数据倾斜. 2.对jobs数比较多的作业运行效率相对比较低,比如即使有几百行的表,如果多次关联多次汇总,产生十几个jobs,没半小时是跑不完的.

HIVE 优化浅谈

- - IT瘾-dev
作者:邓力,entobit技术总监,八年大数据从业经历,由一代HADOOP入坑,深耕云计算应用领域,由从事亚马逊EMR和阿里云EMR应用开发逐步转入大数据架构领域,对大数据生态及框架应用有深刻理解. 随着商务/运营同学执行的HQL越来越多,整体HIVE执行效率变低,本文从HIVE切入,分析HQL面临的问题和待优化部分,结合其他大数据框架来解决实际问题.

Hive优化之小文件问题及其解决方案_lavimer-CSDN博客

- -
1.动态分区插入数据,产生大量的小文件,从而导致map数量剧增. 2.reduce数量越多,小文件也越多(reduce的个数和输出文件是对应的). 3.数据源本身就包含大量的小文件. 1.从Hive的角度看,小文件会开很多map,一个map开一个JVM去执行,所以这些任务的初始化,启动,执行会浪费大量的资源,严重影响性能.

Hive Join 优化 翻译

- - 数据库 - ITeye博客
翻译自  https://cwiki.apache.org/confluence/display/Hive/LanguageManual+JoinOptimization#LanguageManualJoinOptimization-AutoConversiontoSMBMapJoin. Join Optimization ----Join 调优.

hive优化要点总结

- - CSDN博客云计算推荐文章
1、让服务器尽可能的多做事情,榨干服务器资源,以最高系统吞吐量为目标. 再好的硬件没有充分利用起来,都是白扯淡. (1)  启动一次job尽可能的多做事情,一个job能完成的事情,不要两个job来做.  通常来说前面的任务启动可以稍带一起做的事情就一起做了,以便后续的多个任务重用,与此紧密相连的是模型设计,好的模型特别重要..