hive小文件合并

标签: hive 文件 合并 | 发表时间:2017-05-21 22:15 | 作者:student_lp
出处:http://www.iteye.com

    hive仓库表数据最终是存储在HDFS上,由于Hadoop的特性,对大文件的处理非常高效。而且大文件可以减少文件元数据信息,减轻NameNode的存储压力。但是在数据仓库中,越是上层的表汇总程度就越高,数据量也就越小,而且这些表通常会有日期分区,随着时间的推移,HDFS的文件数目就会逐步增加。

一、小文件带来的问题

  • HDFS的文件包好数据块和元信息,其中元信息包括位置、大小、分块等信息,都保存在NameNode的内存中。每个对象大约占用150个字节,因此一千万文件及分块就会占用约3G的内存空间,一旦接近这个量级,NameNode的性能就会开始下降。
  • HDFS读写小文件时也会更加耗时,因为每次都需要从NameNode获取元信息,并且对应的DataNode建立连接。对于MapReduce程序来说,小文件会增加Mapper的数量,每个Map任务只会处理很少的数据,浪费大量的调度时间。

二、Hive小文件产生的原因

    一方面hive数据仓库中汇总表的数据量通常比源数据少的多,而且为了提升运算速度,我们会增加Reduce的数量,Hive本身也会做类似的优化----Reducer数量等于源数据的量除以hive.exec.reducers.bytes.per.reduce所配置的量(默认1G)。Reduce数量的增加也即意味着结果文件的增加,从而产生小文件的问题。

    解决小文件的问题可以从两个方向入手:

  • 输入合并。即在map前合并小文件。
  • 输出合并。即在输出结果的时候合并小文件。

三、配置Map输入合并

-- 每个Map最大输入大小,决定合并后的文件数
set mapred.max.split.size=256000000;
-- 一个节点上split的至少的大小 ,决定了多个data node上的文件是否需要合并
set mapred.min.split.size.per.node=100000000;
-- 一个交换机下split的至少的大小,决定了多个交换机上的文件是否需要合并
set mapred.min.split.size.per.rack=100000000;
-- 执行Map前进行小文件合并
set hive.input.format=org.apache.hadoop.hive.ql.io.CombineHiveInputFormat;

 四、配置hive结果合并

    通过设置hive的配置项在执行结束后对结果文件进行合并:

  • hive.merge.mapfiles在map-only job后合并文件,默认TRUE;
  • hive.merge.mapredfiles在map-reduce job后合并文件,默认false;
  • hive.merge.size.per.task合并后每个文件的大小,默认256M;
  • hive.merge.smallfiles.avgsize平均文件大小,是决定是否执行合并操作的阈值,默认160M

     hive在对结果文件进行合并时会执行一个额外的map-only脚本,mapper的数量是文件总大小除以size.per.task参数所得的值,触发合并的条件是:根据查询类型不同,相应的mapfiles/mapredfiles参数需要打开;结果文件的平均大小需要大于avgsize参数的值。

-- map-red job,5个reducer,产生5个60K的文件。
create table dw_stage.zj_small as
select paid, count (*)
from dw_db.dw_soj_imp_dtl
where log_dt = '2014-04-14'
group by paid;
-- 执行额外的map-only job,一个mapper,产生一个300K的文件。
set hive.merge.mapredfiles= true;
create table dw_stage.zj_small as
select paid, count (*)
from dw_db.dw_soj_imp_dtl
where log_dt = '2014-04-14'
group by paid;
-- map-only job,45个mapper,产生45个25M左右的文件。
create table dw_stage.zj_small as
select *
from dw_db.dw_soj_imp_dtl
where log_dt = '2014-04-14'
and paid like '%baidu%' ;
-- 执行额外的map-only job,4个mapper,产生4个250M左右的文件。
set hive.merge.smallfiles.avgsize=100000000;
create table dw_stage.zj_small as
select *
from dw_db.dw_soj_imp_dtl
where log_dt = '2014-04-14'
and paid like '%baidu%' ;

 五、压缩文件的处理

    对于输出结果为压缩文件形式存储的情况,要解决小文件问题,如果在map输入前合并,对输出的文件存储格式并没有限制。但是如果使用输出合并,则必须配合SequenceFile来存储,否则无法进行合并,以下是实例:

set mapred.output.compression.type=BLOCK;
set hive.exec.compress.output= true;
set mapred.output.compression.codec=org.apache.hadoop.io.compress.LzoCodec;
set hive.merge.smallfiles.avgsize=100000000;
drop table if exists dw_stage.zj_small;
create table dw_stage.zj_small
STORED AS SEQUENCEFILE
as select *
from dw_db.dw_soj_imp_dtl
where log_dt = '2014-04-14'
and paid like '%baidu%' ;

 六、使用HAR归档文件

    Hadoop的归档文件格式也是解决小文件问题的方式之一。而且hive提供了原生支持:

set hive.archive.enabled= true;
set hive.archive.har.parentdir.settable= true;
set har.partfile.size=1099511627776;
ALTER TABLE srcpart ARCHIVE PARTITION(ds= '2008-04-08', hr= '12' );
ALTER TABLE srcpart UNARCHIVE PARTITION(ds= '2008-04-08', hr= '12' );

    如果使用的不是分区表,则可以创建成外部表,并使用har://协议来指定路径。

 

    转:http://blog.csdn.net/yycdaizi/article/details/43341239



已有 0 人发表留言,猛击->> 这里<<-参与讨论


ITeye推荐



相关 [hive 文件 合并] 推荐:

hive小文件合并

- - 互联网 - ITeye博客
    hive仓库表数据最终是存储在HDFS上,由于Hadoop的特性,对大文件的处理非常高效. 而且大文件可以减少文件元数据信息,减轻NameNode的存储压力. 但是在数据仓库中,越是上层的表汇总程度就越高,数据量也就越小,而且这些表通常会有日期分区,随着时间的推移,HDFS的文件数目就会逐步增加.

hive-0 简介 安装 本地文件上传到hive

- - 互联网 - ITeye博客
Hive 是建立在 Hadoop  上的数据仓库基础构架. 它提供了一系列的工具,可以用来进行数据提取转化加载(ETL ),这是一种可以存储、查询和分析存储在 Hadoop  中的大规模数据的机制. Hive 定义了简单的类 SQL  查询语言,称为 QL ,它允许熟悉 SQL  的用户查询数据. 同时,这个语言也允许熟悉 MapReduce  开发者的开发自定义的 mapper  和 reducer  来处理内建的 mapper 和 reducer  无法完成的复杂的分析工作.

hive 配置文件以及join中null值的处理

- - CSDN博客云计算推荐文章
1.  三种设定方式:配置文件. ·   用户自定义配置文件:$HIVE_CONF_DIR/hive-site.xml. ·   默认配置文件:$HIVE_CONF_DIR/hive-default.xml. 用户自定义配置会覆盖默认配置. 另外,Hive也会读入Hadoop的配置,因为Hive是作为Hadoop的客户端启动的,Hadoop的配置文件包括.

Hadoop 归档 和HIVE 如何使用har 归档 文件

- - CSDN博客云计算推荐文章
但对于MapReduce 来说起不到任何作用,因为har文件就相当一个目录,仍然不能讲小文件合并到一个split中去,一个小文件一个split ,任然是低效的,这里要说一点<>对这个翻译有问题,上面说可以分配到一个split中去,但是低效的.      既然有优势自然也有劣势,这里不说它的不足之处,仅介绍如果使用har 并在hadoop中更好的使用har 文件.

Hive优化之小文件问题及其解决方案_lavimer-CSDN博客

- -
1.动态分区插入数据,产生大量的小文件,从而导致map数量剧增. 2.reduce数量越多,小文件也越多(reduce的个数和输出文件是对应的). 3.数据源本身就包含大量的小文件. 1.从Hive的角度看,小文件会开很多map,一个map开一个JVM去执行,所以这些任务的初始化,启动,执行会浪费大量的资源,严重影响性能.

hive调优

- - 互联网 - ITeye博客
一、    控制hive任务中的map数: . 1.    通常情况下,作业会通过input的目录产生一个或者多个map任务. 主要的决定因素有: input的文件总个数,input的文件大小,集群设置的文件块大小(目前为128M, 可在hive中通过set dfs.block.size;命令查看到,该参数不能自定义修改);.

hive 优化 tips

- - CSDN博客推荐文章
一、     Hive join优化. 也可以显示声明进行map join:特别适用于小表join大表的时候,SELECT /*+ MAPJOIN(b) */ a.key, a.value FROM a join b on a.key = b.key. 2.     注意带表分区的join, 如:.

Hive中的join

- - CSDN博客云计算推荐文章
select a.* from a join b on a.id = b.id select a.* from a join b on (a.id = b.id and a.department = b.department). 在使用join写查询的时候有一个原则:应该将条目少的表或者子查询放在join操作符的左边.

hive优化(2)

- - 开源软件 - ITeye博客
Hive是将符合SQL语法的字符串解析生成可以在Hadoop上执行的MapReduce的工具. 使用Hive尽量按照分布式计算的一些特点来设计sql,和传统关系型数据库有区别,. 所以需要去掉原有关系型数据库下开发的一些固有思维. 1:尽量尽早地过滤数据,减少每个阶段的数据量,对于分区表要加分区,同时只选择需要使用到的字段.

hive优化

- - 开源软件 - ITeye博客
hive.optimize.cp=true:列裁剪. hive.optimize.prunner:分区裁剪. hive.limit.optimize.enable=true:优化LIMIT n语句. hive.limit.optimize.limit.file=10:最大文件数.   1.job的输入数据大小必须小于参数:hive.exec.mode.local.auto.inputbytes.max(默认128MB).