k8s 使用rolebinding限制或增加访问命名空间以及可执行操作权限_直到世界的尽头-CSDN博客

标签: | 发表时间:2021-07-29 22:07 | 作者:
出处:https://zzq23.blog.csdn.net

权限控制原理 RBAC——基于角色的访问控制

基于角色的访问控制(Role-Based Access Control, 即”RBAC”)

k8s使用”rbac.authorization.k8s.io” API Group实现授权决策,允许管理员通过Kubernetes API动态配置策略。

也就是说 每个k8s用户调用k8s的api时,都会经过一层角色的权限校验,比如 我当前的用户或者 服务账户(serviceaccount)关联的是哪一个角色,就拥有这一个角色的访问权限。

基于这样的原理,k8s可以很灵活的控制 用户或者服务账户对 资源的 访问,限制权限还是增加访问权限。

定义理解

Role与ClusterRole

在RBAC API中,一个角色包含了一套表示一组权限的规则。

权限以纯粹的累加形式累积(没有”否定”的规则)。

角色分为两种

一种是Role,负责命名空间(namespace)内的权限

一种是ClusterRole,负责整个Kubernetes集群范围内的权限

Role

一个Role对象只能用于授予对某一单一命名空间中资源的访问权限。

以下示例描述了”default”命名空间中的一个Role对象的定义,用于授予对pod的读访问权限:

      kind: Role
apiVersion: rbac.authorization.k8s.io/v1beta1
metadata:
  namespace: default
  name: pod-reader
rules:
- apiGroups: [""] # 空字符串""表明使用core API group
  resources: ["pods"]
  verbs: ["get", "watch", "list"]

ClusterRole

ClusterRole对象可以授予与Role对象相同的权限,但由于它们属于集群范围对象, 也可以使用它们授予对以下几种资源的访问权限:

集群范围资源(例如节点,即node)
非资源类型endpoint(例如”/healthz”)
跨所有命名空间的命名空间范围资源(例如pod,需要运行命令kubectl get pods --all-namespaces来查询集群中所有的pod)

下面示例中的ClusterRole定义可用于授予用户对某一特定命名空间,或者所有命名空间中的secret(取决于其绑定方式)的读访问权限:

      kind: ClusterRole
apiVersion: rbac.authorization.k8s.io/v1beta1
metadata:
  # 鉴于ClusterRole是集群范围对象,所以这里不需要定义"namespace"字段
  name: secret-reader
rules:
- apiGroups: [""]
  resources: ["secrets"]
  verbs: ["get", "watch", "list"]

RoleBinding与ClusterRoleBinding

角色绑定将一个角色中定义的各种权限授予一个或者一组用户。

角色绑定 需要两个部分:
1、用户或者用户组或者服务账户(即subject, 包括用户——User、用户组——Group、或者服务账户——Service Account) ----需要权限的主体
1、角色引用---- 定义权限的资源

角色绑定 也就是 告诉 k8s集群 哪个用户属于哪些角色的操作,k8s中角色绑定对应role和clusterRole 也分成两种:

RoleBinding:在命名空间中可以通过RoleBinding对象授予权限
ClusterRoleBinding: 而集群范围的权限授予则通过ClusterRoleBinding对象完成。

RoleBinding

RoleBinding可以引用在同一命名空间内定义的Role对象。

下面示例中定义的RoleBinding对象在”default”命名空间中将”pod-reader”角色授予用户”jane”。 这一授权将允许用户”jane”从”default”命名空间中读取pod。

      # 以下角色绑定定义将允许用户"jane"从"default"命名空间中读取pod。
kind: RoleBinding
apiVersion: rbac.authorization.k8s.io/v1beta1
metadata:
  name: read-pods
  namespace: default
subjects:
- kind: User
  name: jane
  apiGroup: rbac.authorization.k8s.io
roleRef:
  kind: Role
  name: pod-reader
  apiGroup: rbac.authorization.k8s.io

RoleBinding对象也可以引用一个ClusterRole对象用于在RoleBinding所在的命名空间内授予用户对所引用的ClusterRole中 定义的命名空间资源的访问权限。

这一点允许管理员在整个集群范围内首先定义一组通用的角色,然后再在不同的命名空间中复用这些角色。

例如,尽管下面示例中的RoleBinding引用的是一个ClusterRole对象,但是用户”dave”(即角色绑定主体)还是只能读取”development” 命名空间中的secret(即RoleBinding所在的命名空间)。

      # 以下角色绑定允许用户"dave"读取"development"命名空间中的secret。
kind: RoleBinding
apiVersion: rbac.authorization.k8s.io/v1beta1
metadata:
  name: read-secrets
  namespace: development # 这里表明仅授权读取"development"命名空间中的资源。
subjects:
- kind: User
  name: dave
  apiGroup: rbac.authorization.k8s.io
roleRef:
  kind: ClusterRole
  name: secret-reader
  apiGroup: rbac.authorization.k8s.io

ClusterRoleBinding

可以使用ClusterRoleBinding在集群级别和所有命名空间中授予权限。下面示例中所定义的ClusterRoleBinding 允许在用户组”manager”中的任何用户都可以读取集群中任何命名空间中的secret。

      # 以下`ClusterRoleBinding`对象允许在用户组"manager"中的任何用户都可以读取集群中任何命名空间中的secret。
kind: ClusterRoleBinding
apiVersion: rbac.authorization.k8s.io/v1beta1
metadata:
  name: read-secrets-global
subjects:
- kind: Group
  name: manager
  apiGroup: rbac.authorization.k8s.io
roleRef:
  kind: ClusterRole
  name: secret-reader
  apiGroup: rbac.authorization.k8s.io

对资源的可执行操作控制

大多数资源由代表其名字的字符串表示,例如”pods”,就像它们出现在相关API endpoint的URL中一样。
然而,有一些Kubernetes API还 包含了”子资源”,比如pod的logs。

在Kubernetes中,pod logs endpoint的URL格式为:

      GET /api/v1/namespaces/{namespace}/pods/{name}/log

在这种情况下,”pods”是命名空间资源,而”log”是pods的子资源。

为了在RBAC角色中表示出这一点,我们需要使用斜线来划分资源 与子资源。

如果需要角色绑定主体读取pods以及pod log,您需要定义以下角色:

      kind: Role
apiVersion: rbac.authorization.k8s.io/v1beta1
metadata:
  namespace: default
  name: pod-and-pod-logs-reader
rules:
- apiGroups: [""]
  resources: ["pods", "pods/log"]
  verbs: ["get", "list"]

通过resourceNames列表,角色可以针对不同种类的请求根据资源名引用资源实例。

当指定了resourceNames列表时,不同动作 种类的请求的权限,如使用”get”、”delete”、”update”以及”patch”等动词的请求,将被限定到资源列表中所包含的资源实例上。

例如,如果需要限定一个角色绑定主体只能”get”或者”update”一个configmap时,您可以定义以下角色:

      kind: Role
apiVersion: rbac.authorization.k8s.io/v1beta1
metadata:
  namespace: default
  name: configmap-updater
rules:
- apiGroups: [""]
  resources: ["configmap"]
  resourceNames: ["my-configmap"]
  verbs: ["update", "get"]

值得注意的是,如果设置了resourceNames,则请求所使用的动词不能是list、watch、create或者deletecollection。

由于资源名不会出现在create、list、watch和deletecollection等API请求的URL中,所以这些请求动词不会被设置了resourceNames 的规则所允许,因为规则中的resourceNames部分不会匹配这些请求。

一些角色定义的例子

在以下示例中,我们仅截取展示了rules部分的定义。

允许读取core API Group中定义的资源”pods”:

      rules:
- apiGroups: [""]
  resources: ["pods"]
  verbs: ["get", "list", "watch"]

允许读写在”extensions”和”apps” API Group中定义的”deployments”:

      rules:
- apiGroups: ["extensions", "apps"]
  resources: ["deployments"]
  verbs: ["get", "list", "watch", "create", "update", "patch", "delete"]

允许读取”pods”以及读写”jobs”:

      rules:
- apiGroups: [""]
  resources: ["pods"]
  verbs: ["get", "list", "watch"]
- apiGroups: ["batch", "extensions"]
  resources: ["jobs"]
  verbs: ["get", "list", "watch", "create", "update", "patch", "delete"]

允许读取一个名为”my-config”的ConfigMap实例(需要将其通过RoleBinding绑定从而限制针对某一个命名空间中定义的一个ConfigMap实例的访问):

      rules:
- apiGroups: [""]
  resources: ["configmaps"]
  resourceNames: ["my-config"]
  verbs: ["get"]

允许读取core API Group中的”nodes”资源(由于Node是集群级别资源,所以此ClusterRole定义需要与一个ClusterRoleBinding绑定才能有效):

      rules:
- apiGroups: [""]
  resources: ["nodes"]
  verbs: ["get", "list", "watch"]

允许对非资源endpoint “/healthz”及其所有子路径的”GET”和”POST”请求(此ClusterRole定义需要与一个ClusterRoleBinding绑定才能有效):

      rules:
- nonResourceURLs: ["/healthz", "/healthz/*"] # 在非资源URL中,'*'代表后缀通配符
  verbs: ["get", "post"]

对角色绑定主体(Subject)的引用

RoleBinding或者ClusterRoleBinding将角色绑定到角色绑定主体(Subject)。

角色绑定主体可以是用户组(Group)、用户(User)或者服务账户(Service Accounts)。

用户由字符串表示。可以是纯粹的用户名,例如”alice”、电子邮件风格的名字,如 “[email protected]” 或者是用字符串表示的数字id。

由Kubernetes管理员配置认证模块 以产生所需格式的用户名。

对于用户名,RBAC授权系统不要求任何特定的格式。

然而,前缀system:是 为Kubernetes系统使用而保留的,所以管理员应该确保用户名不会意外地包含这个前缀。

Kubernetes中的用户组信息由授权模块提供。用户组与用户一样由字符串表示。

Kubernetes对用户组 字符串没有格式要求,但前缀system:同样是被系统保留的。

服务账户拥有包含 system:serviceaccount:前缀的用户名,并属于拥有system:serviceaccounts:前缀的用户组。

角色绑定的一些例子
以下示例中,仅截取展示了RoleBinding的subjects字段。

一个名为”[email protected]”的用户:

      subjects:
- kind: User
  name: "[email protected]"
  apiGroup: rbac.authorization.k8s.io

一个名为”frontend-admins”的用户组:

      subjects:
- kind: Group
  name: "frontend-admins"
  apiGroup: rbac.authorization.k8s.io

kube-system命名空间中的默认服务账户:

      subjects:
- kind: ServiceAccount
  name: default
  namespace: kube-system

名为”qa”命名空间中的所有服务账户:

      subjects:
- kind: Group
  name: system:serviceaccounts:qa
  apiGroup: rbac.authorization.k8s.io

在集群中的所有服务账户:

      subjects:
- kind: Group
  name: system:serviceaccounts
  apiGroup: rbac.authorization.k8s.io

所有认证过的用户(version 1.5+):

      subjects:
- kind: Group
  name: system:authenticated
  apiGroup: rbac.authorization.k8s.io

所有未认证的用户(version 1.5+):

      subjects:
- kind: Group
  name: system:unauthenticated
  apiGroup: rbac.authorization.k8s.io

所有用户(version 1.5+):

      subjects:
- kind: Group
  name: system:authenticated
  apiGroup: rbac.authorization.k8s.io
- kind: Group
  name: system:unauthenticated
  apiGroup: rbac.authorization.k8s.io

限制和新增命名空间可执行操作的权限

我们在上面已经了解了怎么定义Role和 RoleBinding 以及 clusterRole和clusterRoleBinding 以及 详细的可执行操作的配置。

实现 限制和 新增权限就 很简单了

步骤如下:

1、根据我们的需求 编写 Role或者 clusterRole的定义文件

使用命令

      vi  read-pod-clusterRole.yaml

编写相关clusterRole定义

      apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
  name: read-pod-clusterRole
rules:
- apiGroups: [""]
  resources: ["pods"]
  verbs: ["delete","get","list","watch","create","update"]

并创建

      kubectl apply  read-pod-clusterRole.yaml

2、创建sa账户或者使用原有的用户名

      vi zzq-serviceaccount.yaml

编写相关serviceaccount定义

      apiVersion: v1
kind: ServiceAccount
metadata:
  name: zzq-serviceaccount
  namespace: default

并创建

      kubectl apply  zzq-serviceaccount.yaml

3、创建clusterRoleBinding

      vi zzq-serviceaccount-pod-clusterRoleBinding.yaml

编写相关clusterRoleBinding定义

      apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
  name: zzq-serviceaccount-pod-clusterRoleBinding
roleRef:
  apiGroup: rbac.authorization.k8s.io
  kind: ClusterRole
  name: read-pod-clusterRole
subjects:
- kind: ServiceAccount
  name: zzq-serviceaccount
  namespace: default

并创建

      kubectl apply  zzq-serviceaccount-pod-clusterRoleBinding.yaml

了解更多

自动更新

每次启动时,API Server都会更新默认ClusterRole所缺乏的各种权限,并更新默认ClusterRoleBinding所缺乏的各个角色绑定主体。 这种自动更新机制允许集群修复一些意外的修改。由于权限和角色绑定主体在新的Kubernetes释出版本中可能变化,这也能够保证角色和角色 绑定始终保持是最新的。

如果需要禁用自动更新,请将默认ClusterRole以及ClusterRoleBinding的rbac.authorization.kubernetes.io/autoupdate 设置成为false。 请注意,缺乏默认权限和角色绑定主体可能会导致非功能性集群问题。

自Kubernetes 1.6+起,当集群RBAC授权器(RBAC Authorizer)处于开启状态时,可以启用自动更新功能.

系统相关角色讲解–默认角色与默认角色绑定

API Server会创建一组默认的ClusterRole和ClusterRoleBinding对象。 这些默认对象中有许多包含system:前缀,表明这些资源由Kubernetes基础组件”拥有”。 对这些资源的修改可能导致非功能性集群(non-functional cluster)。一个例子是system:node ClusterRole对象。 这个角色定义了kubelets的权限。如果这个角色被修改,可能会导致kubelets无法正常工作。

所有默认的ClusterRole和ClusterRoleBinding对象都会被标记为kubernetes.io/bootstrapping=rbac-defaults。

发现类角色

| 默认ClusterRole |默认ClusterRoleBinding |描述
| ------------ | ------------ |
|system:basic-user | system:authenticated and system:unauthenticatedgroups | 允许用户只读访问有关自己的基本信息。
| system:discovery | system:authenticated and system:unauthenticatedgroups | 允许只读访问API discovery endpoints, 用于在API级别进行发现和协商。

面向用户的角色

一些默认角色并不包含system:前缀,它们是面向用户的角色。 这些角色包含超级用户角色(cluster-admin),即旨在利用ClusterRoleBinding(cluster-status)在集群范围内授权的角色, 以及那些使用RoleBinding(admin、edit和view)在特定命名空间中授权的角色。

默认ClusterRole 默认ClusterRoleBinding 描述
cluster-admin system:masters group 超级用户权限,允许对任何资源执行任何操作。 在ClusterRoleBinding中使用时,可以完全控制集群和所有命名空间中的所有资源。 在RoleBinding中使用时,可以完全控制RoleBinding所在命名空间中的所有资源,包括命名空间自己。
admin None 管理员权限,利用RoleBinding在某一命名空间内部授予。 在RoleBinding中使用时,允许针对命名空间内大部分资源的读写访问, 包括在命名空间内创建角色与角色绑定的能力。 但不允许对资源配额(resource quota)或者命名空间本身的写访问。
edit None 允许对某一个命名空间内大部分对象的读写访问,但不允许查看或者修改角色或者角色绑定。
view None 允许对某一个命名空间内大部分对象的只读访问。 不允许查看角色或者角色绑定。 由于可扩散性等原因,不允许查看secret资源。

核心组件角色 Core Component Roles

默认ClusterRole 默认ClusterRoleBinding 描述
system:kube-scheduler system:kube-scheduler user 允许访问kube-scheduler组件所需要的资源
system:kube-controller-manager system:kube-controller-manager user 允许访问kube-controller-manager组件所需要的资源。 单个控制循环所需要的权限请参阅控制器(controller)角色
system:node system:nodes group (deprecated in 1.7) 允许对kubelet组件所需要的资源的访问,包括读取所有secret和对所有pod的写访问。 自Kubernetes 1.7开始, 相比较于这个角色,更推荐使用Node authorizer 以及NodeRestriction admission plugin, 并允许根据调度运行在节点上的pod授予kubelets API访问的权限。 自Kubernetes 1.7开始,当启用Node授权模式时,对system:nodes用户组的绑定将不会被自动创建。
system:node-proxier system:kube-proxy user 允许对kube-proxy组件所需要资源的访问。

其它组件角色

默认ClusterRole 默认ClusterRoleBinding 描述
system:auth-delegator None 允许委托认证和授权检查。 通常由附加API Server用于统一认证和授权。
system:heapster None Heapster组件的角色。
system:kube-aggregator None kube-aggregator组件的角色。
system:kube-dns kube-dns service account in the kube-systemnamespace kube-dns组件的角色。
system:node-bootstrapper None 允许对执行Kubelet TLS引导(Kubelet TLS bootstrapping)所需要资源的访问.
system:node-problem-detector None node-problem-detector组件的角色。
system:persistent-volume-provisioner None 允许对大部分动态存储卷创建组件(dynamic volume provisioner)所需要资源的访问。

控制器(Controller)角色

Kubernetes controller manager负责运行核心控制循环。 当使用–use-service-account-credentials选项运行controller manager时,每个控制循环都将使用单独的服务账户启动。 而每个控制循环都存在对应的角色,前缀名为system:controller:。 如果不使用–use-service-account-credentials选项时,controller manager将会使用自己的凭证运行所有控制循环,而这些凭证必须被授予相关的角色。 这些角色包括:

system:controller:attachdetach-controller
system:controller:certificate-controller
system:controller:cronjob-controller
system:controller:daemon-set-controller
system:controller:deployment-controller
system:controller:disruption-controller
system:controller:endpoint-controller
system:controller:generic-garbage-collector
system:controller:horizontal-pod-autoscaler
system:controller:job-controller
system:controller:namespace-controller
system:controller:node-controller
system:controller:persistent-volume-binder
system:controller:pod-garbage-collector
system:controller:replicaset-controller
system:controller:replication-controller
system:controller:resourcequota-controller
system:controller:route-controller
system:controller:service-account-controller
system:controller:service-controller
system:controller:statefulset-controller
system:controller:ttl-controller

初始化与预防权限升级

RBAC API会阻止用户通过编辑角色或者角色绑定来升级权限。 由于这一点是在API级别实现的,所以在RBAC授权器(RBAC authorizer)未启用的状态下依然可以正常工作。

用户只有在拥有了角色所包含的所有权限的条件下才能创建/更新一个角色,这些操作还必须在角色所处的相同范围内进行(对于ClusterRole来说是集群范围,对于Role来说是在与角色相同的命名空间或者集群范围)。 例如,如果用户”user-1”没有权限读取集群范围内的secret列表,那么他也不能创建包含这种权限的ClusterRole。为了能够让用户创建/更新角色,需要:

授予用户一个角色以允许他们根据需要创建/更新Role或者ClusterRole对象。
授予用户一个角色包含他们在Role或者ClusterRole中所能够设置的所有权限。如果用户尝试创建或者修改Role或者ClusterRole以设置那些他们未被授权的权限时,这些API请求将被禁止。
用户只有在拥有所引用的角色中包含的所有权限时才可以创建/更新角色绑定(这些操作也必须在角色绑定所处的相同范围内进行)或者用户被明确授权可以在所引用的角色上执行绑定操作。 例如,如果用户”user-1”没有权限读取集群范围内的secret列表,那么他将不能创建ClusterRole来引用那些授予了此项权限的角色。为了能够让用户创建/更新角色绑定,需要:

授予用户一个角色以允许他们根据需要创建/更新RoleBinding或者ClusterRoleBinding对象。
授予用户绑定某一特定角色所需要的权限:
隐式地,通过授予用户所有所引用的角色中所包含的权限
显式地,通过授予用户在特定Role(或者ClusterRole)对象上执行bind操作的权限

例如,下面例子中的ClusterRole和RoleBinding将允许用户”user-1”授予其它用户”user-1-namespace”命名空间内的admin、edit和view等角色和角色绑定。

      apiVersion: rbac.authorization.k8s.io/v1beta1
kind: ClusterRole
metadata:
  name: role-grantor
rules:
- apiGroups: ["rbac.authorization.k8s.io"]
  resources: ["rolebindings"]
  verbs: ["create"]
- apiGroups: ["rbac.authorization.k8s.io"]
  resources: ["clusterroles"]
  verbs: ["bind"]
  resourceNames: ["admin","edit","view"]
---
apiVersion: rbac.authorization.k8s.io/v1beta1
kind: RoleBinding
metadata:
  name: role-grantor-binding
  namespace: user-1-namespace
roleRef:
  apiGroup: rbac.authorization.k8s.io
  kind: ClusterRole
  name: role-grantor
subjects:
- apiGroup: rbac.authorization.k8s.io
  kind: User
  name: user-1

当初始化第一个角色和角色绑定时,初始用户需要能够授予他们尚未拥有的权限。 初始化初始角色和角色绑定时需要:

使用包含system:masters用户组的凭证,该用户组通过默认绑定绑定到cluster-admin超级用户角色。

如果您的API Server在运行时启用了非安全端口(–insecure-port),您也可以通过这个没有施行认证或者授权的端口发送角色或者角色绑定请求。

使用命令行工具操作rolebinding

有两个kubectl命令可以用于在命名空间内或者整个集群内授予角色。

在某一特定命名空间内授予Role或者ClusterRole

      kubectl create rolebinding

示例如下:

在名为”acme”的命名空间中将admin ClusterRole授予用户”bob”:

      kubectl create rolebinding bob-admin-binding --clusterrole=admin --user=bob --namespace=acme

在名为”acme”的命名空间中将view ClusterRole授予服务账户”myapp”:

      kubectl create rolebinding myapp-view-binding --clusterrole=view --serviceaccount=acme:myapp --namespace=acme

在整个集群中授予ClusterRole,包括所有命名空间

      kubectl create clusterrolebinding

示例如下:

在整个集群范围内将cluster-admin ClusterRole授予用户”root”:

      kubectl create clusterrolebinding root-cluster-admin-binding --clusterrole=cluster-admin --user=root

在整个集群范围内将

      system:node ClusterRole

授予用户”kubelet”:

      kubectl create clusterrolebinding kubelet-node-binding --clusterrole=system:node --user=kubelet

在整个集群范围内将view ClusterRole授予命名空间”acme”内的服务账户”myapp”:

      kubectl create clusterrolebinding myapp-view-binding --clusterrole=view --serviceaccount=acme:myapp

请参阅CLI帮助文档以获得上述命令的详细用法

服务账户(Service Account)权限

默认的RBAC策略将授予控制平面组件(control-plane component)、节点(node)和控制器(controller)一组范围受限的权限, 但对于”kube-system”命名空间以外的服务账户,则不授予任何权限(超出授予所有认证用户的发现权限)。

这一点允许您根据需要向特定服务账号授予特定权限。 细粒度的角色绑定将提供更好的安全性,但需要更多精力管理。 更粗粒度的授权可能授予服务账号不需要的API访问权限(甚至导致潜在授权扩散),但更易于管理。

从最安全到最不安全可以排序以下方法:

对某一特定应用程序的服务账户授予角色(最佳实践)

要求应用程序在其pod规范(pod spec)中指定serviceAccountName字段,并且要创建相应服务账户(例如通过API、应用程序清单或者命令kubectl create serviceaccount等)。

例如 在”my-namespace”命名空间中授予服务账户”my-sa”只读权限:

      kubectl create rolebinding my-sa-view \
  --clusterrole=view \
  --serviceaccount=my-namespace:my-sa \
  --namespace=my-namespace

在某一命名空间中授予”default”服务账号一个角色

如果一个应用程序没有在其pod规范中指定serviceAccountName,它将默认使用”default”服务账号。

注意:授予”default”服务账号的权限将可用于命名空间内任何没有指定serviceAccountName的pod。

下面的例子将在”my-namespace”命名空间内授予”default”服务账号只读权限:

      kubectl create rolebinding default-view \
  --clusterrole=view \
  --serviceaccount=my-namespace:default \
  --namespace=my-namespace

目前,许多[加载项(addon)](/ docs / concepts / cluster-administration / addons /)作为”kube-system”命名空间中的”default”服务帐户运行。

要允许这些加载项使用超级用户访问权限,请将cluster-admin权限授予”kube-system”命名空间中的”default”服务帐户。

注意:启用上述操作意味着”kube-system”命名空间将包含允许超级用户访问API的秘钥。

      kubectl create clusterrolebinding add-on-cluster-admin \
  --clusterrole=cluster-admin \
  --serviceaccount=kube-system:default

为命名空间中所有的服务账号授予角色

如果您希望命名空间内的所有应用程序都拥有同一个角色,无论它们使用什么服务账户,您可以为该命名空间的服务账户用户组授予角色。

下面的例子将授予”my-namespace”命名空间中的所有服务账户只读权限:

      kubectl create rolebinding serviceaccounts-view \
  --clusterrole=view \
  --group=system:serviceaccounts:my-namespace \
  --namespace=my-namespace

对集群范围内的所有服务账户授予一个受限角色(不鼓励)

如果您不想管理每个命名空间的权限,则可以将集群范围角色授予所有服务帐户。

下面的例子将所有命名空间中的只读权限授予集群中的所有服务账户:

      kubectl create clusterrolebinding serviceaccounts-view \
  --clusterrole=view \
  --group=system:serviceaccounts

授予超级用户访问权限给集群范围内的所有服务帐户(强烈不鼓励)

如果您根本不关心权限分块,您可以对所有服务账户授予超级用户访问权限。

警告:这种做法将允许任何具有读取权限的用户访问secret或者通过创建一个容器的方式来访问超级用户的凭据。

      kubectl create clusterrolebinding serviceaccounts-cluster-admin \
  --clusterrole=cluster-admin \
  --group=system:serviceaccounts

从版本1.5升级

在Kubernetes 1.6之前,许多部署使用非常宽泛的ABAC策略,包括授予对所有服务帐户的完整API访问权限。

默认的RBAC策略将授予控制平面组件(control-plane components)、节点(nodes)和控制器(controller)一组范围受限的权限, 但对于”kube-system”命名空间以外的服务账户,则不授予任何权限(超出授予所有认证用户的发现权限)。

虽然安全性更高,但这可能会影响到期望自动接收API权限的现有工作负载。 以下是管理此转换的两种方法:

并行授权器(authorizer)

同时运行RBAC和ABAC授权器,并包括旧版ABAC策略:

–authorization-mode=RBAC,ABAC --authorization-policy-file=mypolicy.jsonl
RBAC授权器将尝试首先授权请求。如果RBAC授权器拒绝API请求,则ABAC授权器将被运行。这意味着RBAC策略或者ABAC策略所允许的任何请求都是可通过的。

当以日志级别为2或更高(–v = 2)运行时,您可以在API Server日志中看到RBAC拒绝请求信息(以RBAC DENY:为前缀)。 您可以使用该信息来确定哪些角色需要授予哪些用户,用户组或服务帐户。 一旦授予服务帐户角色,并且服务器日志中没有RBAC拒绝消息的工作负载正在运行,您可以删除ABAC授权器。

宽泛的RBAC权限

您可以使用RBAC角色绑定来复制一个宽泛的策略。

警告:以下政策略允许所有服务帐户作为集群管理员。 运行在容器中的任何应用程序都会自动接收服务帐户凭据,并且可以对API执行任何操作,包括查看secret和修改权限。 因此,并不推荐使用这种策略。

      kubectl create clusterrolebinding permissive-binding \
  --clusterrole=cluster-admin \
  --user=admin \
  --user=kubelet \
  --group=system:serviceaccounts

参考链接

https://www.bookstack.cn/read/kubernetes-handbook/guide-rbac.md

相关 [k8s rolebinding 限制] 推荐:

k8s 使用rolebinding限制或增加访问命名空间以及可执行操作权限_直到世界的尽头-CSDN博客

- -
权限控制原理 RBAC——基于角色的访问控制. 基于角色的访问控制(Role-Based Access Control, 即”RBAC”). k8s使用”rbac.authorization.k8s.io” API Group实现授权决策,允许管理员通过Kubernetes API动态配置策略. 也就是说 每个k8s用户调用k8s的api时,都会经过一层角色的权限校验,比如 我当前的用户或者 服务账户(serviceaccount)关联的是哪一个角色,就拥有这一个角色的访问权限.

k8s资源需求和限制, 以及pod驱逐策略 - ainimore - 博客园

- -
requests:需求,最低保障, 保证被调度的节点上至少有的资源配额 limits:限制,硬限制, 容器可以分配到的最大资源配额. 如果Pod中所有Container的所有Resource的limit和request都相等且不为0,则这个Pod的QoS Class就是Guaranteed. 注意,如果一个容器只指明了limit,而未指明request,则表明request的值等于limit的值.

CentOS7 安装 K8S

- - 企业架构 - ITeye博客
前提:VirtualBox CentOS7. 物理机IP   192.168.18.8. 虚拟机1IP:192.168.18.100(VMaster master). 虚拟机2IP:192.168.18.101(VServer1 node1). 虚拟机3IP:192.168.18.102(VServer2 node2).

k8s水平扩容

- - Bboysoul's Blog
k8s 的好处就是可以弹性水平扩容和纵向扩容,平时纵向扩容用的不太多,所以今天说说水平扩容,在创建hpa之前你要确定集群中已经安装了metrics-server,我使用的是k3s,直接自带. 首先创建需要的容器,下面是dockerfile. 原理就是当你访问index.php的时候会进行一个循环计算来提高cpu的使用率.

# [k8s] HPA: Horizontal Pod Autoscaling

- - V2EX - 技术
HPA 是 K8S 的一大利器. 通过 HPA, 我们可以让服务的 pod 数量根据特定指标自动增加或减少, 使得在高峰期有足够的资源服务请求, 在低峰期又可以避免占用过多的资源. 同时, 在 SOA 架构下, 我们也习惯通过 HPA 来避免劳心劳力的为每个微服务计算所需的资源.. minReplicas: 允许的最小 pod 数量.

K8S 1.24.0 安装部署

- - Share
在 v1.2x 版本中, Kubernetes 支持的最大节点数为 5000. 更具体地说,我们支持满足以下所有条件的配置:. 每个节点的 pod 数量不超过. Kubernetes v1.20 开始,默认移除 docker 的依赖,如果宿主机上安装了 docker 和 containerd,将优先使用 docker 作为容器运行引擎,如果宿主机上未安装 docker 只安装了 containerd,将使用 containerd 作为容器运行引擎;.

k8s docker集群搭建 - CSDN博客

- -
一、Kubernetes系列之介绍篇.     - 一次构建,到处运行. 2.什么是kubernetes.   首先,他是一个全新的基于容器技术的分布式架构领先方案. Kubernetes(k8s)是Google开源的容器集群管理系统(谷歌内部:Borg). 在Docker技术的基础上,为容器化的应用提供部署运行、资源调度、服务发现和动态伸缩等一系列完整功能,提高了大规模容器集群管理的便捷性.

深入掌握K8S Pod - Yabea - 博客园

- -
K8S configmap介绍. Pod是k8s中最小的调度单元,包含了一个“根容器”和其它用户业务容器. 如果你使用过k8s的话,当然会了解pod的基本使用,但是为了更好的应用,你需要深入了解pod的配置、调度、升级和扩缩容等. pod包含一个或多个相对紧密耦合的容器,处于同一个pod中的容器共享同样的存储空间、IP地址和Port端口.

浅谈 k8s ingress controller 选型 - 知乎

- -
大家好,先简单自我介绍下,我叫厉辉,来自腾讯云. 业余时间比较喜欢开源,现在是Apache APISIX PPMC. 今天我来简单给大家介绍下 K8S Ingress 控制器的选型经验,今天我讲的这些内容需要大家对 K8S 有一定的了解,下面是我的分享. 阅读本文需要熟悉以下基本概念:. 集群:是指容器运行所需云资源的集合,包含了若干台云服务器、负载均衡器等云资源.

SkyWalking探针在 k8s 中集成

- - 掘金 后端
最近公司需要在 k8s 环境接入 SkyWalking,要让应用无感知接入. 开始打算的是把agent文件放到基础镜像中,这样应用只需要引用包含agent的基础镜像即可. 但是这样会有几个问题,首先不好管理agent,升级需要应用重新打镜像部署,动静太大. 第二,不是所有应用都需要接入,要按需引入不同基础镜像,这样就多个一个步骤,应用会有感知.