ClickHouse使用实践与规范

标签: dev | 发表时间:2022-05-29 00:00 | 作者:
出处:http://itindex.net/relian

导读:

ClickHouse作为一款开源列式数据库管理系统(DBMS)近年来备受关注,主要用于数据分析(OLAP)领域。作者根据以往经验和遇到的问题,总结出一些基本的开发和使用规范,以供使用者参考。


随着公司业务数据量日益增长,数据处理场景日趋复杂,急需一种具有高可用性和高性能的数据库来支持业务发展,ClickHouse是俄罗斯的搜索公司Yandex开源的MPP架构的分析引擎,号称比事务数据库快100-1000倍,最大的特色是高性能的向量化执行引擎,而且功能丰富、可靠性高。


在过去的一年中,杭研DBA团队已经支撑网易集团内部多个事业部上线使用,集群规模共计十几套,CPU近3000核,每日近千亿数据入库,千亿级别表查询可在秒级完成,大大提升了业务原有OLAP架构的效能,覆盖的业务场景包括:用户行为日志分析,进行PV、UV、留存、转化漏斗和操作,包括游戏反外挂数据统计分析;用户画像,人群圈定和问卷投放;AB实验数据的实时计算与分析;机器和业务日志的分析、监控、查询等。


1

ClickHouse应用场景


1. 写在前面

(1)如果你的业务预算或机器资源有限,强烈不推荐使用clickhouse,因为这套架构成本比较高。

(2)最小集群部署所需机器:ck节点需要2台256G内存/40c cpu物理机,磁盘使用SSD,加上3台zookeeper和2台chproxy应用主机或者云主机。

(3)Clickhouse自带了丰富的功能来应对复杂的业务场景和大数据量,所以在使用期间需要运维和开发侧都投入人力对这些功能(表引擎类型)学习和掌握。


2. 业务在数据层的表现

(1)业务大多数是读请求,存储宽表,无大字段,较少的并发(单台100-200qps左右)。

(2)数据批写入(1000条以上,线上业务建议5w-10w),不修改或少修改已添加的数据。

(3)无事务要求,对数据一致性要求低。

(4)对于简单查询,允许延迟大约50毫秒,每一个查询除了一个大表外都很小。

(5)处理单个查询时需要高吞吐量(每个服务器每秒高达数十亿行)。


3.具体业务场景

(1)用户行为分析,精细化运营分析:日活,留存率分析,路径分析,有序漏斗转化率分析,Session分析等;

(2)实时日志分析,监控分析;

(3)实时数仓。


2

表引擎选择


ClickHouse表引擎一共分为四个系列,分别是Log、MergeTree、Integration、Special。其中包含了两种特殊的表引擎Replicated、Distributed,功能上与其他表引擎正交,目前业务上主要使用MergeTree系列,配合使用Mview和Distributed引擎。


ClickHouse 包含以下几种常用的引擎类型:

  • MergeTree 引擎:该系列引擎是执行高负载任务的最通用和最强大的表引擎,它们的特点是可以快速插入数据以及进行后续的数据处理。该系列引擎还同时支持数据复制(使用Replicated的引擎版本),分区 (partition) 以及一些其它引擎不支持的额外功能。

  • Log 引擎:该系列引擎是具有最小功能的轻量级引擎。当你需要快速写入许多小表(最多约有100万行)并在后续任务中整体读取它们时使用该系列引擎是最有效的。

  • 集成引擎:该系列引擎是与其它数据存储以及处理系统集成的引擎,如 Kafka,MySQL 以及 HDFS 等,使用该系列引擎可以直接与其它系统进行交互,但也会有一定的限制,如确有需要,可以尝试一下。

  • 特殊引擎:该系列引擎主要用于一些特定的功能,如 Distributed 用于分布式查询,MaterializedView 用来聚合数据,以及 Dictionary 用来查询字典数据等。


在所有的表引擎中,最为核心的当属MergeTree系列表引擎,这些表引擎拥有最为强大的性能和最广泛的使用场合。对于非MergeTree系列的其他引擎而言,主要用于特殊用途,场景相对有限。而MergeTree系列表引擎是官方主推的存储引擎,支持几乎所有ClickHouse核心功能,下面主要介绍MergeTree系列表引擎:


1. MergeTree表引擎

MergeTree在写入一批数据时,数据总会以数据片段的形式写入磁盘,且数据片段不可修改。为了避免片段过多,ClickHouse会通过后台线程,定期合并这些数据片段,属于相同分区的数据片段会被合成一个新的片段。这种数据片段往复合并的特点,也正是合并树名称的由来。


 MergeTree作为家族系列最基础的表引擎,主要有以下特点:

  • 存储的数据按照主键排序:允许创建稀疏索引,从而加快数据查询速度

  • 支持分区,可以通过PRIMARY KEY语句指定分区字段。

  • 支持数据副本

  • 支持数据采样


 建表语法:

   CREATE TABLE [IF NOT EXISTS] [db.]table_name [ON CLUSTER cluster]   (   name1 [type1] [DEFAULT|MATERIALIZED|ALIAS expr1] [TTL expr1],       name2 [type2] [DEFAULT|MATERIALIZED|ALIAS expr2] [TTL expr2],       ...       INDEX index_name1 expr1 TYPE type1(...) GRANULARITY value1,       INDEX index_name2 expr2 TYPE type2(...) GRANULARITY value2   ) ENGINE = MergeTree()   ORDER BY expr   [PARTITION BY expr]   [PRIMARY KEY expr]   [SAMPLE BY expr]   [TTL expr [DELETE|TO DISK 'xxx'|TO VOLUME 'xxx'], ...]   [SETTINGS name=value, ...]


  • ENGINE:ENGINE = MergeTree(),MergeTree引擎没有参数

  • ORDER BY:排序字段。比如ORDER BY (Col1, Col2),值得注意的是,如果没有指定主键,默认情况下 sorting key(排序字段)即为主键。如果不需要排序,则可以使用ORDER BY tuple()语法,这样的话,创建的表也就不包含主键。这种情况下,ClickHouse会按照插入的顺序存储数据。必选。

  • PARTITION BY:分区字段,强烈建议指定。

  • PRIMARY KEY:指定主键,如果排序字段与主键不一致,可以单独指定主键字段。否则默认主键是排序字段。可选。

  • SAMPLE BY:采样字段,如果指定了该字段,那么主键中也必须包含该字段。比如SAMPLE BY intHash32(UserID) ORDER BY (CounterID, EventDate, intHash32(UserID))。可选。

  • TTL:数据的存活时间。在MergeTree中,可以为某个列字段或整张表设置TTL。当时间到达时,如果是列字段级别的TTL,则会删除这一列的数据;如果是表级别的TTL,则会删除整张表的数据。大表强烈建议指定。

  • SETTINGS:额外的参数配置。一般设置index_granularity=8192 ,可选。


2. ReplicatedMergeTree表引

ReplicatedMergeTree使得以上 MergeTree 家族拥有副本机制,保证高可用,用于生产环境,对于大数据量的表来说不推荐使用,因为副本是基于zk做数据同步的,大数据量会对zk造成巨大压力,成为整个ck整个集群瓶颈。业务可以根据数据重要程度在性能和数据副本之间做选择。


建表示例:

   CREATE TABLE [IF NOT EXISTS] [db.]table_name [ON CLUSTER cluster]   (`id` Int64, `ymd` Int64)   ENGINE = ReplicatedMergeTree('/clickhouse/tables/replicated/{shard}/test', '{replica}')   PARTITION BY ymd   ORDERBYid


  • /clickhouse/tables/ 这一部分指定的是在ZK上创建的路径地址,可随意变换只要记得即可

  • {shard} 指的是分片的标志,同一个分片内的所有机器应该保持相同。建议使用使用的是集群名+分片名的配置也就是{layer}-{shard},这里的数据就是在macros中配置的属性

  • test 建议使用表名称

  • {replica} 参数建议在macros配置成机器的hostname,因为每台机器的hostname都是不一样的,因此就能确保每个表的识别符都是唯一的了


3. ReplacingMergeTree表引

上文提到MergeTree表引擎无法对相同主键的数据进行去重,ClickHouse提供了ReplacingMergeTree引擎,可以针对相同主键的数据进行去重,它能够在合并分区时删除重复的数据。值得注意的是,ReplacingMergeTree只是在一定程度上解决了数据重复问题,但是并不能完全保障数据不重复。


建表语法:

   CREATE TABLE [IF NOT EXISTS] [db.]table_name [ON CLUSTER cluster]   (   name1 [type1] [DEFAULT|MATERIALIZED|ALIAS expr1],       name2 [type2] [DEFAULT|MATERIALIZED|ALIAS expr2],       ...   ) ENGINE = ReplacingMergeTree([ver])   [PARTITION BY expr]   [ORDER BY expr]   [PRIMARY KEY expr]   [SAMPLE BY expr]   [SETTINGS name=value, ...]


[ver]:可选参数,列的版本,可以是UInt、Date或者DateTime类型的字段作为版本号。该参数决定了数据去重的方式。

当没有指定[ver]参数时,保留最新的数据;如果指定了具体的值,保留最大的版本数据。


注意点:

(1)去重规则

ReplacingMergeTree是支持对数据去重的,去除重复数据时,是以ORDERBY排序键为基准的,而不是PRIMARY KEY。

(2)何时删除重复数据

在执行分区合并时,会触发删除重复数据。optimize的合并操作是在后台执行的,无法预测具体执行时间点,除非是手动执行。

(3)不同分区的重复数据不会被去重

ReplacingMergeTree是以分区为单位删除重复数据的。只有在相同的数据分区内重复的数据才可以被删除,而不同数据分区之间的重复数据依然不能被剔除。


4. SummingMergeTree表引

该引擎继承了MergeTree引擎,当合并 SummingMergeTree 表的数据片段时,ClickHouse 会把所有具有相同主键的行合并为一行,该行包含了被合并的行中具有数值数据类型的列的汇总值,即如果存在重复的数据,会对对这些重复的数据进行合并成一条数据,类似于group by的效果。


推荐将该引擎和 MergeTree 一起使用。例如,将完整的数据存储在 MergeTree 表中,并且使用 SummingMergeTree 来存储聚合数据。这种方法可以避免因为使用不正确的主键组合方式而丢失数据。


如果用户只需要查询数据的汇总结果,不关心明细数据,并且数据的汇总条件是预先明确的,即GROUP BY的分组字段是确定的,可以使用该表引擎。


建表语法:

   CREATE TABLE [IF NOT EXISTS] [db.]table_name [ON CLUSTER cluster]   (   name1 [type1] [DEFAULT|MATERIALIZED|ALIAS expr1],       name2 [type2] [DEFAULT|MATERIALIZED|ALIAS expr2],           ...      ENGINE = SummingMergeTree([columns]) -- 指定合并汇总字段   [PARTITION BY expr]   [ORDER BY expr]   [SAMPLE BY expr]   [SETTINGS name=value, ...]


 注意点:

 要保证PRIMARY KEY expr指定的主键是ORDER BY expr 指定字段的前缀,比如

 -- 如下情况是允许的:

   ORDER BY (A,B,C)   PRIMARYKEY A

-- 如下情况会报错:

   DB::Exception: Primary key must be a prefix of the sorting key   ORDER BY (A,B,C)   PRIMARY KEY B


这种强制约束保障了即便在两者定义不同的情况下,主键仍然是排序键的前缀,不会出现索引与数据顺序混乱的问题。


总结:

  • SummingMergeTree是根据什么对两条数据进行合并的用ORBER BY排序键作为聚合数据的条件Key。即如果排序key是相同的,则会合并成一条数据,并对指定的合并字段进行聚合。

  • 仅对分区内的相同排序key的数据行进行合并以数据分区为单位来聚合数据。当分区合并时,同一数据分区内聚合Key相同的数据会被合并汇总,而不同分区之间的数据则不会被汇总。

  • 如果没有指定聚合字段,会怎么聚合如果没有指定聚合字段,则会按照非主键的数值类型字段进行聚合

  • 对于非汇总字段的数据,该保留哪一条如果两行数据除了排序字段相同,其他的非聚合字段不相同,那么在聚合发生时,会保留最初的那条数据,新插入的数据对应的那个字段值会被舍弃。


5. Aggregatingmergetree表引

该表引擎继承自MergeTree,可以使用 AggregatingMergeTree 表来做增量数据统计聚合。如果要按一组规则来合并减少行数,则使用 AggregatingMergeTree 是合适的。


AggregatingMergeTree是通过预先定义的聚合函数计算数据并通过二进制的格式存入表内。与SummingMergeTree的区别在于:SummingMergeTree对非主键列进行sum聚合,而AggregatingMergeTree则可以指定各种聚合函数。


建表语法:

   CREATE TABLE [IF NOT EXISTS] [db.]table_name [ON CLUSTER cluster]   (    name1 [type1] [DEFAULT|MATERIALIZED|ALIAS expr1],            name2 [type2] [DEFAULT|MATERIALIZED|ALIAS expr2],            ...      ENGINE = AggregatingMergeTree()   [PARTITION BY expr]   [ORDER BY expr]   [SAMPLE BY expr]   [SETTINGS name=value, ...]


 6. 其他特殊的表引

Distributed表引擎

Distributed表引擎是分布式表的代名词,它自身不存储任何数据,数据都分散存储在某一个分片上,能够自动路由数据至集群中的各个节点,所以Distributed表引擎需要和其他数据表引擎一起协同工作。

所以,一张分布式表底层会对应多个本地分片数据表,由具体的分片表存储数据,分布式表与本地分片数据表是一对多的关系。


Distributed表引擎的定义形式如下所示:

   Distributed(cluster_name,database_name,table_name[, sharding_key])


各个参数的含义分别如下:

  • cluster_name:集群名称,与集群配置中的自定义名称相对应。

  • database_name:数据库名称

  • table_name:表名称

  • sharding_key:可选的,用于分片的key值,在数据写入的过程中,分布式表会依据分片key的规则,将数据分布到各个节点的本地表。


创建分布式表是读时检查的机制,也就是说对创建分布式表和本地表的顺序并没有强制要求。


同样值得注意的是,在上面的语句中使用了ON CLUSTER分布式DDL,这意味着在集群的每个分片节点上,都会创建一张Distributed表,这样便可以从其中任意一端发起对所有分片的读、写请求。


3

开发规范


 1. 查询sql编写规范

(1)当多表联查时,查询的数据仅从其中一张表出时,可考虑使用IN操作而不是JOIN。

(2)多表查询性能较差,多表Join时要满足小表在右的原则,右表关联时被加载到内存中与左表进行比较,ClickHouse中无论是Left Join 、Right Join还是Inner Join永远都是拿着右表中的每一条记录到左表中查找该记录是否存在,所以右表必须是小表。

(3)将一些需要关联分析的业务创建成字典表进行join操作,前提是字典表不宜太大,因为字典表会常驻内存。

(4)禁⽌业务select * ,列存数据,每减少一个字段会减少大量的数据扫描,提升查询效率。

(5)建议使用 limit 限制返回数据条数使用limit返回指定的结果集数量,不会进行向下扫描,大大提升了查询效率。

(6)查询时如果可以建议带上分区键查询,可以有效减少数据扫描量,提升查询效率。

(7)CK的稀疏索引使得点查询(即kv类型的查询)性能不佳,千万不要把它简单当做关系型数据库进行查询。

(8)使用Global优化分布式子查询,避免出现查询指数级放大。

(9)使用 uniqCombined 替代 distinctuniqCombined 对去重进行了优化,通过近似去重提升十倍查询性能。

(10)尽量不去使用字符串类型,时间类型最终会转换成数值类型进行处理,数值类型在执行效率和存储上远好过字符串。

(11)ClickHouse的分布式表性能性价比不如物理表高,建表分区字段值不宜过多,防止数据导入过程磁盘可能会被打满。

(12)不要在唯一列或大基数列上进行分组或去重操作,基数太大会消耗过多的io和内存。

(13)CPU一般在50%左右会出现查询波动,达到70%会出现大范围的查询超时,CPU是最关键的指标,要非常关注。


 2. 数据写入注意事项

(1)不适合高并发写入,最好还是从异步化队列写入,batch insert 5w-10w 起步,尽量不要执行单条或插入操作,会产生大量小分区文件,给后台merge任务带来巨大压力。

(2)几乎完全不支持update/delete,也不支持事务。

(3)建议表要指定分区键,尤其是数据量大的表,插入/查询/合并都是以分区为单位,合理的分区可以提升整体性能。

(4)分区不建议太多,如果分区太多,会因需要打开的文件描述符过多导致查询效率不佳。

(5)数据在写入ClickHouse前预先的对数据进行分组,避免一次插入的数据属于多个分区。

(6)注意MerTree 主键允许存在重复数据(ReplacingMergeTree可以在分区内去重)。


 3. 建表规范

(1)本地表命名格式:{tab_name}_local,分布式表命名格式:{tab_name}_shard 。

(2)物化视图命名规范:{tabl_name_xxx}_mv 。

(3)尽量不要使用Nullable类型,该类型对性能有一定影响,且不能包含在索引中。

(4)合理设置分区,所有本地表使用order by关键字指定分区字段,建议采用日期作为一级分区。默认 order by 字段作为主键。

(5)如果表中不是必须保留全量历史数据,建议指定TTL,可以免去手动过期历史数据的麻烦。 

(6)所有复制引擎表建表指定 use_minimalistic_part_header_in_zookeeper=1。

  

 本地ReplicatedMergeTree表建表模板如下所示:

   CREATE TABLE IF NOT EXISTS ads. ads_af_city_complaint_1d _local ON cluster ycdata_3shards_3replicas   (`id` UInt64 COMMENT '序号',   `order_id` UInt64 COMMENT '订单号',   `gross_weight` UInt64  COMMENT '权重',   `create_time` Date COMMENT '创建时间',   `event` String COMMENT '事件')   ENGINE = ReplicatedMergeTree('/clickhouse/table/{shared}/ads_af_city_complaint_1d _local', '{replica}')   PARTITION BY create_time   ORDER BY id   TTL create_time + toIntervalDay(90)   SETTINGS index_granularity = 8192, use_minimalistic_part_header_in_zookeeper = 1;


解释:

  • TTL 定义了数据保留策略为90天。

  • {shared},{replica}无需替换为一个具体值。

  • ycdata_3shards_3replicas为clickhouse是集群名称。


4

集群架构


 1. 常用架构

为简化业务使用方式,降低业务使用成本。对clickhouse集群的使用做一些约束,能够提升交付速度,提高标准化程度,降低使用成本。


以4台机器为例,集群模式固定为2分片2副本模式,若数据量较大4台机器不够时,可以增加2台机器,集群模式未3分片每个分片2副本形式,另外需要3台zookeeper和2台chproxy应用主机或者云主机,两台chproxy使用NLB管理,程序直连NLB IP。


对于单表数据量超过100亿数据的表不建议使用副本表,建议采用4分片0副本架构。(具体架构可以和DBA沟通后确定)


总体上讲,一句话总结:业务访问统一入口,读分布式表,写本地表。


 优势:

  •  解决clickhouse集群高可用性,保证单机器宕机情况不影响集群可用性。

  •  解决写入分布式表写入效率低以及读分布式表时热点问题

  •  解决写入本地表数据需要业务层路由的问题

  •  降低业务使用门槛,提升交付效率


限制:

(1)业务写入本地表(以_local结尾),读分布式表(以_shard结尾表)

  • 业务表名为musci_bi_t1,则写入musci_bi_t1_local 通过proxy代理轮询写入底层节点保证数据分布均衡;

  • 读musci_bi_t1_shard表,同样可以通过proxy将shard表路由压力分散到底层节点。

(2)业务写入时需要批量写入,需要业务去保证每批次数据量大小尽量一致,以保证数据尽量均匀分布。

(3)业务每批次写入时都要重新获取连接,禁止使用长连接否则无法使用负载均衡能力,会导致数据分布不均衡。

(4)不支持跨集群访问

  • 不同集群内的分片以及副本数量不固定,可能会导致某些节点没有local表,会使得写入失败;

  • 统一集群名与database名,防止跨集群访问。


问题:

因业务每批次写入数据量的不同,会导致数据分布的不均匀。


运维注意点:

  • 对业务不透明,insert需要指定local结尾表,查询需要查sharded表,需要与业务确认;

  • 副本同步使用底层ReplicatedMergeTree引擎,提升副本同步性能以及数据一致性(需要手动创建底层表,保证主备关系正确);

  • 使用on cluster 语法在每个节点中创建分布式表,提升建表效率。


2. zookeeper的关键作用

ClickHouse中依赖Zookeeper解决的问题可以分为两大类:分布式DDL执行、ReplicatedMergeTree表主备节点之间的状态同步。zk的性能会影响整个集群的性能表现。使用复制表之后,随着数据量的增加,zookeeper可能成为集群瓶颈,zk集群建议机器配置如下:3台32G/4c机器,万兆网卡,磁盘80G-200G。


可以看作ck把zookeeper用成了目录服务,日志服务和协调服务,当znode达到几百万后,zk出现异常,常见是连接失败,此时有些表会出现readonly模式。头条对这个问题的处理方式是改写源码调整ck对zk的使用方式,为zk减重。


如果业务上单表数据量较大并且希望使用复制表,务必在建表时指定use_minimalistic_part_header_in_zookeeper参数为1,达到压缩zk数据的目的。


3. chproxy

chproxy官方推荐的是专用于ClickHouse数据库的HTTP代理和负载均衡器,使用go语言实现,目前仅支持http协议。在Clickhouse集群中,每一台机器都是单独的实例,我们可以使用其中的一台作为查询机器。此时如何更好的完成负载均衡是我们所关注的,chproxy即是这么一个工具。


特性:

  • 用户路由和响应缓存。

  • 灵活的限制。

  • 自动SSL证书续订。


chroxy连接测试:

   echo 'showdatabases;' | curl 'http://10.200.161.49:9009/?user=writeuser&password=xxxx'--data-binary @-


关于chroxy参数配置可参照如下文档:

https://github.com/ContentSquare/chproxy

 

5

客户端工具选择


1. DBeave

DBeaver是免费和开源(GPL)为开发人员和数据库管理员通用数据库工具。易用性是该项目的主要目标,是经过精心设计和开发的数据库管理工具。免费、跨平台、基于开源框架和允许各种扩展写作(插件)。


2. Superse

Superset 是一款由 Airbnb 开源的“现代化的企业级 BI(商业智能) Web 应用程序”,其通过创建和分享 dashboard,为数据分析提供了轻量级的数据查询和可视化方案。


3. Tabi

功能和部署方式与Superset相似,可参考如下文档:

https://github.com/smi2/tabix.ui/releases


6

可用性说明


根据选择的集群架构不同, clickhouse集群表现出的可用性也不同。

(1)数据的读写高可用就是依赖复制表引擎创建多副本机制保证。如果Clickhouse集群使用是多分片多副本架构,当一个副本所在的机器宕机后,chproxy层会自动路由到可用的副本读写数据;

(2)如果Clickhouse集群只用了sharding分片,没有用到复制表作为数据副本,那么单台机器宕机只会影响到单个数据分片的读写;

(3)当zk集群不可用时,整个集群的写入会都会受影响,不管有没有使用复制表。

总结:

数据可用性要求越高,意味着投入更多的资源,单台机器的资源利用率越低,业务可根据数据重要程度灵活选择,不过Clickhouse的定位是在线分析olap系统,建议业务方将ck里的数据也定义为二级数据,数据丢失后是可以再生成的,从而控制整体架构的成本,提高单台机器的资源利用率。同时强烈建议业务不要强依赖Clickhouse,要有一定的兜底和熔断机制。


7

集群配置参数调优


1. max_concurrent_querie

最大并发处理的请求数(包含select,insert等),默认值100,推荐150(不够再加),在我们的集群中出现过”max concurrent queries”的问题。


2. max_bytes_before_external_sor

当order by已使用max_bytes_before_external_sort内存就进行溢写磁盘(基于磁盘排序),如果不设置该值,那么当内存不够时直接抛错,设置了该值order by可以正常完成,但是速度相对内存来说肯定要慢点(实测慢的非常多,无法接受)。


3. background_pool_size

后台线程池的大小,merge线程就是在该线程池中执行,当然该线程池不仅仅是给merge线程用的,默认值16,推荐32提升merge的速度(CPU允许的前提下)。


4. max_memory_usag

单个SQL在单台机器最大内存使用量,该值可以设置的比较大,这样可以提升集群查询的上限。


5. max_memory_usage_for_all_querie

单机最大的内存使用量可以设置略小于机器的物理内存(留一点内操作系统)。

 

6. max_bytes_before_external_group_b

在进行group by的时候,内存使用量已经达到了max_bytes_before_external_group_by的时候就进行写磁盘(基于磁盘的group by相对于基于磁盘的order by性能损耗要好很多的),一般max_bytes_before_external_group_by设置为max_memory_usage / 2,原因是在clickhouse中聚合分两个阶段:

  • 查询并且建立中间数据;

  • 合并中间数据 写磁盘在第一个阶段,如果无须写磁盘,clickhouse在第一个和第二个阶段需要使用相同的内存。


这些内存参数强烈推荐配置上,增强集群的稳定性避免在使用过程中出现莫名其妙的异常。


学习资料:

  • 官网  

    https://clickhouse.com/docs/en/engines/table-engines/integrations/

  • 中文社区  

    http://clickhouse.com.cn/



作者简介

刘彦鹏,网易杭州研究院数据库工程师。




《数据中台研习社》微信群,请添加微信:laowang5244,备注【进群】


                                                          分享、点赞、在看,给个 三连击呗!

相关 [clickhouse 实践 规范] 推荐:

ClickHouse使用实践与规范

- - IT瘾-dev
ClickHouse作为一款开源列式数据库管理系统(DBMS)近年来备受关注,主要用于数据分析(OLAP)领域. 作者根据以往经验和遇到的问题,总结出一些基本的开发和使用规范,以供使用者参考. 随着公司业务数据量日益增长,数据处理场景日趋复杂,急需一种具有高可用性和高性能的数据库来支持业务发展,ClickHouse是俄罗斯的搜索公司Yandex开源的MPP架构的分析引擎,号称比事务数据库快100-1000倍,最大的特色是高性能的向量化执行引擎,而且功能丰富、可靠性高.

性能提升400%,ClickHouse在携程酒店数仓的实践

- - InfoQ推荐
随着时间推移和业务的快速发展,携程酒店数据累积越来越多. 目前流量日数据在3T左右,再加上各种订单、价、量、态等数据更是庞大. 现有Hive(Spark引擎)执行速度虽然相对较快,但在国际化发展背景下,一些海外业务由于时差问题,数据需要比国内提前数小时完成,性能提升迫在眉睫. 2020年初,我们开始研究ClickHouse在数据仓库领域应用.

ClickHouse在手淘流量分析业务实践

- - InfoQ推荐
导读:本文主要介绍手淘流量分析业务发展过程中,实时性业务分析需求的产生,实时分析目标的设定,如何进行技术的选型,以及如何基于ClickHouse构建系统架构和未来的业务预期. 流量分析与业务背景:什么是流量分析,以及我们的业务背景"大数据"带来的难题:当你的数据量是守恒的时候,需要怎么处理你的数据技术选型与产品考虑:在以上背景下,我们在技术选择和产品考虑时,都做了哪些考虑,以及为什么最终选择ClickHouse,并给大家介绍一些技术解决方案.

支撑700亿数据量的ClickHouse高可用架构实践

- - InfoQ推荐
讲师介绍:蔡岳毅,携程旅行网酒店研发中心高级研发经理,资深架构师,负责酒店大住宿数据智能平台,商户端数据中心以及大数据的创新工作. 大家好,我是来自携程的蔡岳毅,今天给大家分享ClickHouse在我们大数据平台的应用,主要从应用的角度来介绍我们的高可用架构. 其实这个百亿,我没太纠结,来之前我查了一下,现在我的平台上面是将近700亿数据,压缩前是8T,存储是压缩后1.8T.

京东 ClickHouse 高可用实践 – 过往记忆

- -
1.1京东OLAP的场景的难点. 1.2多维分析组件选型考察方面. 1.3京东OLAP组件实施思路. 3.2挂掉一个节点在各种情况下的影响. 3.3节点下线、上线、替换. 4.2架构问题 – ZooKeeper瓶颈. 4.3架构问题 – 扩缩容的问题. ClickHouse为主Doris为辅的策略,有3000台服务器,每天亿次查询万亿条数据写入,广泛服务于各个应用场景,经过历次大促考验,提供了稳定的服务.

ClickHouse Better Practices

- - 简书首页
经过一个月的调研和快速试错,我们的ClickHouse集群已经正式投入生产环境,在此过程中总结出了部分有用的经验,现记录如下. 看官可去粗取精,按照自己项目中的实际情况采纳之. (版本为19.16.14.65). 因为我们引入ClickHouse的时间并不算长,还有很多要探索的,因此不敢妄称“最佳实践”,还是叫做“更佳实践”比较好吧.

Git 约定式提交规范实践

- - IT瘾-tuicool
约定式提交规范提供了一个轻量级的提交历史编写规则,它的内容十分简单:. feat(config): 允许 config 对象直接从其他 config 继承 BREAKING CHANGE: 在 config 对象中增加 `extends` 字段,用于从其他继承 config close issue #23.

blong/clickhouse .md at master · xingxing9688/blong · GitHub

- -
https://clickhouse.yandex/tutorial.html快速搭建集群参考. https://clickhouse.yandex/reference_en.html官网文档. https://habrahabr.ru/company/smi2/blog/317682/关于集群配置参考.

转转前端开发规范的落地实践

- - 掘金 前端
车同轨,书同文,行同伦 - 《礼记·中庸》. 转转在早期团队较小的时候,没有太多规范,遇到问题用自己最擅长的方式去解决就行. 随着公司发展,团队越来越大,因为没有统一规范而造成的问题也越来越多,例如. 组件库重复开发,不同小组组件库各有长短,但整体质量有所欠缺. 不同业务之间,项目无法直接复用,需要大量的开发改造.

开源OLAP引擎综评:HAWQ、Presto、ClickHouse

- - InfoQ推荐
谈到大数据就会联想到Hadoop、Spark整个生态的技术栈. 大家都知道开源大数据组件种类众多,其中开源OLAP引擎包含Hive、SparkSQL、Presto、HAWQ、ClickHouse、Impala、Kylin等. 当前企业对大数据的研究与应用日趋理性,那么,如何根据业务特点,选择一个适合自身场景的查询引擎呢.