五个免费开源的数据挖掘软件

标签: 数据库 杂项资源 jHepWork KNIME Orange | 发表时间:2010-12-13 08:41 | 作者:陈皓 ※ABeen※
出处:http://www.chedong.com/blog/

在网上看到一篇文章介绍五个免费开源的数据挖掘软件,转过来。

Orange

Orange 是一个基于组件的数据挖掘和机器学习软件套装,它的功能即友好,又很强大,快速而又多功能的可视化编程前端,以便浏览数据分析和可视化,基绑定了Python以进行脚本开发。它包含了完整的一系列的组件以进行数据预处理,并提供了数据帐目,过渡,建模,模式评估和勘探的功能。其由C++ 和 Python开发,它的图形库是由跨平台的Qt框架开发。

RapidMiner

RapidMiner, 以前叫 YALE (Yet Another Learning Environment), 其是一个给机器学习和数据挖掘和分析的试验环境,同时用于研究了真实世界数据挖掘。它提供的实验由大量的算子组成,而这些算子由详细的XML 文件记录,并被RapidMiner图形化的用户接口表现出来。RapidMiner为主要的机器学习过程提供了超过500算子,并且,其结合了学习方案和Weka学习环境的属性评估器。它是一个独立的工具可以用来做数据分析,同样也是一个数据挖掘引擎可以用来集成到你的产品中。

Weka

由Java开发的 Weka (Waikato Environment for Knowledge Analysis) 是一个知名机器学机软件,其支持几种经典的数据挖掘任务,显著的数据预处理,集群,分类,回归,虚拟化,以及功能选择。其技术基于假设数据是以一种单个文件或关联的,在那里,每个数据点都被许多属性标注。 Weka 使用Java的数据库链接能力可以访问SQL数据库,并可以处理一个数据库的查询结果。它主要的用户接品是Explorer,也同样支持相同功能的命令行,或是一种基于组件的知识流接口。

JHepWork

为科学家,工程师和学生所设计的 jHepWork 是一个免费的开源数据分析框架,其主要是用开源库来创建 一个数据分析环境,并提供了丰富的用户接口,以此来和那些收费的的软件竞争。它主要是为了科学计算用的二维和三维的制图,并包含了用Java实现的数学科学库,随机数,和其它的数据挖掘算法。 jHepWork 是基于一个高级的编程语言 Jython,当然,Java代码同样可以用来调用 jHepWork 的数学和图形库。

KNIME

KNIME (Konstanz Information Miner) 是一个用户友好,智能的,并有丰演的开源的数据集成,数据处理,数据分析和数据勘探平台。它给了用户有能力以可视化的方式创建数据流或数据通道,可选择性地运行一些或全部的分析步骤,并以后面研究结果,模型 以及 可交互的视图。 KNIME 由Java写成,其基于 Eclipse 并通过插件的方式来提供更多的功能。通过以插件的文件,用户可以为文件,图片,和时间序列加入处理模块,并可以集成到其它各种各样的开源项目中,比如:R语言,Weka, Chemistry Development Kit, 和 LibSVM.

源文:http://www.junauza.com/2010/11/free-data-mining-software.html(墙)

随便看看

相关 [免费 开源 数据挖掘] 推荐:

五个免费开源的数据挖掘软件

- ※ABeen※ - 车东[Blog^2]
在网上看到一篇文章介绍五个免费开源的数据挖掘软件,转过来. Orange 是一个基于组件的数据挖掘和机器学习软件套装,它的功能即友好,又很强大,快速而又多功能的可视化编程前端,以便浏览数据分析和可视化,基绑定了Python以进行脚本开发. 它包含了完整的一系列的组件以进行数据预处理,并提供了数据帐目,过渡,建模,模式评估和勘探的功能.

开源的数据挖掘工具

- - CSDN博客云计算推荐文章
本文的主要内容编译自Blaz Zupan和Janez Demsar的一篇论文(Open-Source Tools for Data Mining). 我仅仅选择其中的要点和大家共享,同时加入一些个人的点评意见. 此外,对开源的数据挖掘工具有兴趣的同仁,可以关注以下 OSDM09这个workshop,它会在PAKDD'09上同时进行,主要讨论的就是开源数据挖掘工具的议题.

数据挖掘开源软件:WEKA基础操作

- - CSDN博客互联网推荐文章
数据挖掘开源软件:WEKA基础教程. 本文档部分来自于网络,随着自己的深入学习,讲不断的修订和完善. 第一节   Weka简介:. Weka是由新西兰怀卡托大学开发的智能分析系统(Waikato Environment for Knowledge Analysis) . 以外的地方,Weka通常按谐音念成Mecca,是一种现今仅存活于新西兰岛的,健壮的棕色鸟,  非常害羞,好奇心很强,但不会飞 .

数据挖掘是神马?

- - 互联网分析
1、数据挖掘需要‘神马样’的流程.  2、哥,有没有详细点的,来个给力的. 4、数据在统计意义上有哪些类型. 9、知道这些工具不知道如何在工作中用呀. 11、还有没有更人性化、智能化的展现. 12、上面这图看起来很给力,背后很复杂吧.  16、转载的留个来源 ,毕竟是我辛苦收集和想出来的,谢谢. 忘记“大数据”,从“中数据”开始.

这就是数据挖掘

- - 互联网分析
当今数据库的容量已经达到上万亿的水平(T)— 1,000,000,000,000个字节. 在这些大量数据的背后隐藏了很多具有决策意义的信息,那么怎么得到这些“知识”呢. 也就是怎样通过一颗颗的树木了解到整个森林的情况. 计 算机科学对这个问题给出的最新回答就是:数据挖掘,在“数据矿山”中找到蕴藏的“知识金块”,帮助企业减少不必要投资的同时提高资金回报.

关于数据挖掘

- - 牛国柱
以下内容来自网络,关于数据挖掘的一些最基本的知识. 数据挖掘是对一系列数据进行分析和挖掘的方法的统称,在精准营销领域,最常用的数据挖掘方法主要包括以下三类:分类、聚类、关联. 分类(Classify)属于预测性模型. 分类模型的构建需要“训练样本”,训练样本中的每一个个体的类别必须是明确的. 分类模型的特征变量一般称为“自变量”,又叫“预测变量”,类别变量称为“目标变量”.

Spark数据挖掘-基于 LSA 隐层语义分析理解APP描述信息(1) - clebeg的个人空间 - 开源中国

- -
Spark数据挖掘-基于 LSA 隐层语义分析理解APP描述信息(1). 结构化数据处理比较直接,然而非结构化数据(比如:文本、语音)处理就比较具有挑战. 对于文本现在比较成熟的技术是搜索引擎,它可以帮助人们从给定的词语中快速找到包含关键词的文本. 但是,一些情况下人们希望找到某一个概念的文本,而不关心文本里面是否包含某个关键词.

Spark数据挖掘-基于 LSA 隐层语义分析理解APP描述信息(2) - clebeg的个人空间 - 开源中国

- -
Spark数据挖掘-基于 LSA 隐层语义分析理解APP描述信息(2). Spark 通过调用 RowMatrix 的 computeSVD 方法会得到三个重要的矩阵 U、S、V , 而且:原始矩阵 近似等于 U * S * V. V: 每一行表示单词,列表示概念,矩阵的值表示单词在概念里面的重要程度.

数据挖掘与Taco Bell编程

- everfly - 译言-每日精品译文推荐
来源Data Mining and Taco Bell Programming. Programmer Ted Dziuba suggests an alternative to traditional program that he called "Taco Bell Programming." The Taco Bell chain creates multiple menu items from about eight different ingredients.

使用Weka进行数据挖掘

- - 搜索研发部官方博客
数据挖掘、机器学习这些字眼,在一些人看来,是门槛很高的东西. 诚然,如果做算法实现甚至算法优化,确实需要很多背景知识. 但事实是,绝大多数数据挖掘工程师,不需要去做算法层面的东西. 他们的精力,集中在特征提取,算法选择和参数调优上. 那么,一个可以方便地提供这些功能的工具,便是十分必要的了. 而weka,便是数据挖掘工具中的佼佼者.