营销应用数据挖掘哪里强!

标签: 产品运营 数据挖掘 营销运用 | 发表时间:2014-11-16 02:16 | 作者:阿拓
分享到:
出处:http://www.woshipm.com

阿拓带你飞:互联网的应用已经深入各个领域,你对营销应用挖掘业务了解多少?web挖掘的营销用途你造?本文带你学会数据挖掘懂得运用“产品推荐引擎”和“用户导向”,提升网站核心价值。

数据挖掘背景

当下的时代是互联网的时代,互联网的深入的应用已经覆盖了各行各业,老老少少。任何人,无论是什么职业,有什么业务模式,产品也好,服务也罢,如果想要有效地开拓市场、引起关注、唤醒客户,都不能离开互联网这个平台而独善。一句话,如果忽视了互联网的影响,任何业务,任何行业都难有大的发展,甚至可能生存不下去。这话听上去很绝对很残酷,但是基本上是事实。作为数据挖掘营销应用的专业人士来说,如果对互联网的营销应用挖掘业务不熟悉的话,那就不只是“遗憾”了,很有可能成为严重影响你专业能力的“短板”,因为你没有活在“当下”(你最多活在“互联网”之前的时代,那个时代跟石器时代一样都是很“遥远”的历史了)。一句话,如果在你的专业领域里没有“互联网的应用”的认识的话,你算不上是你本专业的现代人。

既然形势如此残酷,那么主动也好,被动也罢,各位在各自的专业领域,都应该尝试、熟悉各自专业在互联网里的实践应用。作家,可以考虑在网络上发表作品;歌手,已经有人在网络上贩卖自己的音乐;快餐业里有大量的企业在开拓网络定餐业务;票务公司也在大力开拓网络销售渠道。作为数据挖掘营销应用专业人士,也应该“识时务,挖网络”,于是有了本文,对目前比较成熟的网络用户行为挖掘的营销应用小小总结。 我对web挖掘的思考和总结基本上是从旁观者的角度来学习和参考的;在以后的岁月里,随着我的web挖掘项目实践的逐渐投入,相信对于这个领域的思考和总结会更加生动,更加真实,也更加有价值。有鉴于此,此时此刻更加有必要将目前纸上谈兵的一些想法和感悟敲成文字存入本博客,留待一年后自己真正从web挖掘项目中获得新感悟时加以对照,让实践来证明本期纸上谈兵的“web挖掘营销应用小结”到底是没有价值的纸上谈兵,还是真正的“正确的理论可以成功地指导实践”?呵呵,人生无处不矛盾,人生无处不辨证!!!看破矛盾,人生就洒脱了;学会辨证,人生就进步了!!!

数据挖掘4

网络挖掘三步骤

一般包括三大块内容(Web内容挖掘,Web结构挖掘, 以及跟营销应用直接相关的同时也应用最广泛的Web用法挖掘),本文只谈这个跟营销应用最直接最紧密的Web用法挖掘。下面以B2C网站为例,具体说明从营销应用的角度目前都有那些比较成熟的思路和系列方法、模型。

首先,从网站商业运营管理的一些特征指标来分析。各行各业都有适合本行业特性要求的特征指标(KPI),通过这些KPI的分析、跟踪,就可以从宏观上迅速的比较准确的判断出企业的运营的效率。B2C网站与传统的零售行业有一些相似的地方(都是零售,都是针对消费者产生利润),但是B2C网站区别与传统的零售行业的个性化指标是这个行业的基本特征,必须充分关注,重点分析。这些重点指标、特征包括:流量注册比、购物车比例、订单转化率、page views, 订单平均浏览时间、客单价、重复购买率,等等。

接下来,从网站月度、季度、年度的综合的汇总数据比较,从宏观的角度分析网站运营连续时间段里的运营效益、客户变化、赢利趋势、产品趋势、消费变化等等(产品的、利润的、客户的各个纬度展开分析)。这种宏观的统计汇总分析比较简单,但是很有效果,能迅速发现B2C企业最近几年的发展趋势,出现的问题,甚至可以锁定核心价值客户的群体规模和门槛指标,比如2080原理在本企业的具体定义,比如客户注册之后具体的促销刺激产生消费的时间段的明确界定,甚至客户流失的大致规律和时间期,进出网站的路径分析,等等。

第三步,在上述两步简单分析的基础上,针对更加深入的营销问题和客户关系管理的问题,可以考虑从数据挖掘应用的角度开展分析应用。目前这类数据挖掘应用中最常见的方法是聚类分析、关联分析、以及在此基础上的各种深入的预测模型应用(比如逻辑回归,比如决策树应用等等)。

数据挖掘2

 

企业具体的营销应用

1. 消费者群体划分,对网站用户按照不同的营销要求进行多纬度的指标划分,找出核心消费群体的消费特点(尤其是网络行为特点),并据此采取有针对性的营销措施和服务措施加以满足;这种聚类分析稍加深入就可用做网友关联、兴趣关联、阅读推荐、商品推荐,等等。

2. 某一类消费群体的消费特点分析,找出关联性强的利润贡献高的商品组合,并据此制定有针对性的促削措施、营销推广、产品策略、价格捆绑策略,等等,类似于零售业里面的菜篮子分析;

3. 赢利性强的消费群体的消费特征分析,流失分析,流失特征分析,生命周期分析、交叉销售分析,等等,根据这些分析挖掘出的线索制定相应的营销措施、客户关怀(挽留)、潜力挖掘;

上面例举的是一些最常见的web挖掘的营销用途,实际应用中根据具体企业的实际业务模式和实际数据资源,可以展开千变万化的拓展应用,实在无法一一罗列完。

数据3

数据挖掘运用

换一个说法,从互联网行业的热门术语来说,“产品推荐引擎”和“用户导向”这两个热门应用是提升网站核心价值的重要途径,其实都是可以通过上述数据挖掘应用技术来圆满回答的,其他应用包括网站路径设计与优化(主要是采用link analysis技术),收费产品分类营销,等等凡是网站营销运营管理中出现的很多重大问题和领域,都是可以借助数据挖掘技术有效解决的。 至于上面每种挖掘算法在实际应用中的具体注意事项和成熟的套路,现在也已经有了一些明确的模式和捷径,比如说在聚类分析挖掘中,目前最成熟的商业应用基本上就是基于网络用户的浏览中产生的frequency数据指标来进行分析(比如消费的金额、利润、阶段时间里的浏览次数等等);又比如在很多大型网站里动辄就是几百上千甚至更多的网页,利用归类的方法可以有效压缩页面种类,使得到的挖掘结果能更有效的推广指导实践应用。

原文来自: PMtoo


互联网从业者必备微信公众号:woshipm,如果你已经关注了,证明你已经很牛逼了。

相关 [营销 应用 数据挖掘] 推荐:

营销应用数据挖掘哪里强!

- - 人人都是产品经理
阿拓带你飞:互联网的应用已经深入各个领域,你对营销应用挖掘业务了解多少. 本文带你学会数据挖掘懂得运用“产品推荐引擎”和“用户导向”,提升网站核心价值. 当下的时代是互联网的时代,互联网的深入的应用已经覆盖了各行各业,老老少少. 任何人,无论是什么职业,有什么业务模式,产品也好,服务也罢,如果想要有效地开拓市场、引起关注、唤醒客户,都不能离开互联网这个平台而独善.

试论数据挖掘技术在旅游营销中的应用

- - 标点符
目前,中国的旅游企业面临着一个竞争非常激烈的经营环境. 在现有的需求中获得足够的市场份额是每个企业非常关心的问题. 酒店的亏损经营、旅行社的微利经营实际上预示着通过低价竞争获取市场份额的营销策略在中国已经走到了尽头. 在这种状况下,迫切要求我们采取. 一种切实有效的非价格竞争策略. 价格战的根本原因是不能提供差异化的产品和差异化的营销.

R 语言企业级数据挖掘应用

- - 刘思喆@贝吉塔行星
三月底参加了中国人民大学统计学院海峡两岸数据挖掘研讨会,和大家简单聊了聊R语言在京东商城的数据挖掘应用. 本来想接着写篇博文说明一下, 一直也没腾出时间,今天补上. 在互联网企业,在分析端使用闭源的商用软件几乎是不可能的,原因很简单:成本太高,不管是使用,还是研发及维护. 但我个人觉得这可能还不是最主要的原因,对于互联网企业来说,数据虽然获取更容易,但环境更为复杂.

数据挖掘典型应用:如何做好关联分析

- - 互联网分析沙龙
在电商数据运营中,对于客户而言,有两个很重要的指标对于扩大销售规模是很重要的:第一,提高顾客重复购买次数;第二,提高客户订单中的Basket size(即购物篮件数). 而第二个指标提高Basket size,就是让客户从以前只购买一件产品的转换到现在购买多件产品,从而提高整个购物篮的销售金额,最大限度地实现销售增长.

大数据、数据挖掘在交通领域有哪些应用?

- - 知乎每日精选
对交通行业缺乏深入了解,如有兴趣建议看看:. 大数据理论如何指导交通数据分析. 有数据才有分析,交通领域的数据产量巨大. 这个很好理解,详细讨论需要另开一个问题 大数据对物流管理有什么影响. 交通局通过数据实时分析一方面可以控制公交车和地铁的发车班次和时间,减少空车率,疏导客流缓解城市道路压力;另一方面也可以进行线路优化.

关于数据挖掘

- - 牛国柱
以下内容来自网络,关于数据挖掘的一些最基本的知识. 数据挖掘是对一系列数据进行分析和挖掘的方法的统称,在精准营销领域,最常用的数据挖掘方法主要包括以下三类:分类、聚类、关联. 分类(Classify)属于预测性模型. 分类模型的构建需要“训练样本”,训练样本中的每一个个体的类别必须是明确的. 分类模型的特征变量一般称为“自变量”,又叫“预测变量”,类别变量称为“目标变量”.

数据挖掘是神马?

- - 互联网分析
1、数据挖掘需要‘神马样’的流程.  2、哥,有没有详细点的,来个给力的. 4、数据在统计意义上有哪些类型. 9、知道这些工具不知道如何在工作中用呀. 11、还有没有更人性化、智能化的展现. 12、上面这图看起来很给力,背后很复杂吧.  16、转载的留个来源 ,毕竟是我辛苦收集和想出来的,谢谢. 忘记“大数据”,从“中数据”开始.

这就是数据挖掘

- - 互联网分析
当今数据库的容量已经达到上万亿的水平(T)— 1,000,000,000,000个字节. 在这些大量数据的背后隐藏了很多具有决策意义的信息,那么怎么得到这些“知识”呢. 也就是怎样通过一颗颗的树木了解到整个森林的情况. 计 算机科学对这个问题给出的最新回答就是:数据挖掘,在“数据矿山”中找到蕴藏的“知识金块”,帮助企业减少不必要投资的同时提高资金回报.

数据挖掘与Taco Bell编程

- everfly - 译言-每日精品译文推荐
来源Data Mining and Taco Bell Programming. 程序员Ted Dziuba提出了一种他命名为“Taco Bell编程”的方案用于替代传统编程. Taco Bell链使用大概八种不同的元素来创建多种菜单项. Diziuba希望通过组合使用大概八种不同的shell脚本命令来创建多种应用程序.

数据挖掘之R与SQL

- Wolf - 刘思喆 @ 贝吉塔行星
今天看到老同学@JulieJulieJulieJulie 的浪漫求婚,真的很浪漫、很唯美、很感动. 正如评论说的,我们又相信爱情了. 于是,小兴奋,睡不着,爬起来补一篇文章. 最近在数据挖掘专业网站 KDnuggets 上刊出了2011年度关于数据挖掘/分析语言流行度的调查,不出意料R、SQL、Python果然排在了前三位.