MySQL B+树索引及索引优化

标签: mysql 索引 索引 | 发表时间:2015-05-31 16:18 | 作者:lxl13041491
出处:http://www.iteye.com

    MySQL的索引实现由很多种实现,包括hash索引,B+索引,全文索引等,本文只讨论B+树索引。

为什么使用B+树索引?

1.评价一个索引好坏主要看IO的访问次数,B+树红黑树来说,树高很小(出度很大)即可以有效降低IO的访问次数。B+数的高度h=logd(n),d越大,h越小,查询效率越高。相对B树,B+树d可以很大,因为非叶子节点不存储数据,只存储key,在一个存储页上可以存储更多的key值。在每个页上可以存储更多的key,即d很大。

2.外存按照页进行逻辑划分,页大小固定,当读入外存数据时,会根据局部性原理每次会预读连续的多页数据到内存。B+树的叶子节点是存储是连续和有序的,在查询时,尤其在范围查询时较少的IO次数可以访问到所需的数据。

InnonDB引擎B+树索引是怎么实现的?

1.InnoDB使用聚集索引,数据根据主索引存储在叶子节点上,辅助索引的data域存储主键,索引innodb必须具有主键,并且主键是最好是单调递增的,主键的长度不要过长,负责会浪费空间。myisam使用非聚集索引,即主索引(B+树)的叶子节点存储数据的地址,索引myisam可以没有主键,数据也不是存储在B+主索引的叶子节点上的。

 

怎样选择索引怎样优化索引?

1.索引遵循最左性原理,例如联合索引是有序的(a,b,c),在查询时查询条件是a,ab,abc的精确匹配,都会使用索引,但是如下情况不能使用索引。

1.1 如果不是连续的例如ac,不会使用索引,不过b可以使用in的方式构造索引条件,当然也可以增加ac辅助索引;

1.2 b,c单独精确查询都不会用到索引;

1.3 使用like语句,通配符不在开头可以使用索引;

1.4 范围列查询只能使用第一个列索引,但是有时between and 等多值匹配可以使用索引;

1.5 使用函数或者表达式对列查询,不会使用索引;

2.索引选择性

数据表大于2000建立索引;选择性低即区分度不大的列不适合索引;可以截取前缀作为索引,减少索引长度;一定使用一个自增的字段作为索引。

性能优化常用工具有哪些?

1.使用explain 和show profiles;可以查看索引使用情况和执行效率。explain使用方法和数据含义查看下列文章。

http://database.51cto.com/art/200912/168453.htm



已有 0 人发表留言,猛击->> 这里<<-参与讨论


ITeye推荐



相关 [mysql 索引 索引] 推荐:

[MySQL] B+树索引

- - CSDN博客推荐文章
B+树是一种经典的数据结构,由平衡树和二叉查找树结合产生,它是为磁盘或其它直接存取辅助设备而设计的一种平衡查找树,在B+树中,所有的记录节点都是按键值大小顺序存放在同一层的叶节点中,叶节点间用指针相连,构成双向循环链表,非叶节点(根节点、枝节点)只存放键值,不存放实际数据. 保持树平衡主要是为了提高查询性能,但为了维护树的平衡,成本也是巨大的,当有数据插入或删除时,需采用拆分节点、左旋、右旋等方法.

mysql 索引技巧

- - 小彰
MySQL索引的建立对于MySQL的高效运行是很重要的. 下面介绍几种常见的MySQL索引类型. 在数据库表中,对字段建立索引可以大大提高查询速度. 假如我们创建了一个 mytable表:. CREATE TABLE mytable(   ID INT NOT NULL,    username VARCHAR(16) NOT NULL  );   我们随机向里面插入了10000条记录,其中有一条:5555, admin.

mysql选择索引

- - CSDN博客数据库推荐文章
1、尽量为用来搜索、分类或分组的数据列编制索引,不要为作为输出显示的数据列编制索引. 最适合有索引的数据列是那些在where子句中数据列,在联结子句中出现的数据列,或者是在Group by 、Order by子句中出现的数据列. select 后的数据列最好不要用索引. 2、综合考虑各数据列的维度.

mysql 索引详解

- - 行业应用 - ITeye博客
本文以MySQL数据库为研究对象,讨论与数据库索引相关的一些话题. 特别需要说明的是,MySQL支持诸多存储引擎,而各种存储引擎对索引的支持也各不相同,因此MySQL数据库支持多种索引类型,如BTree索引,哈希索引,全文索引等等. 为了避免混乱,本文将只关注于BTree索引,因为这是平常使用MySQL时主要打交道的索引,至于哈希索引和全文索引本文暂不讨论.

mysql索引认识

- - 数据库 - ITeye博客
数据在磁盘中是以 “块”的形式存储的,所以一张表涉及的数据可能会存在多个块中,而在磁盘中查询数据则会根据字段是否为有序与无序来区分,. 无序情况:1.数值具有唯一性则需要查找 总块数/2.                   2.无序+无唯一性则需要查找  总块数. 有序情况:1.数值唯一性:log2(总块数/2)   (log2是二分查找算法).

MySQL 索引方式

- - zzm
本文配图来自《高性能MySQL(第二版)》. 在数据库中,对性能影响最大的几个策略包括数据库的锁策略、缓存策略、索引策略、存储策略、执行计划优化策略. 索引策略决定数据库快速定位数据的效率,存储策略决定数据持久化的效率. MySQL中两大主要存储引擎MyISAM和InnoDB采用了不同的索引和存储策略,本文将分析它们的异同和性能.

MySql索引总结

- - 掘金后端
MySQL 索引底层数据结构.   Mysql索引使用的数据结构主要有 BTree索引 和 Hash索引. 对于Hash索引来说,底层数据结构就是哈希表,因此在绝大多数需求为单条记录查询的时候,使用Hash索引查询性能最快. 其余大多数场景建议使用BTree索引. 为什么索引能够提高查询速度.

MySQL B+树索引及索引优化

- - 数据库 - ITeye博客
    MySQL的索引实现由很多种实现,包括hash索引,B+索引,全文索引等,本文只讨论B+树索引. 1.评价一个索引好坏主要看IO的访问次数,B+树红黑树来说,树高很小(出度很大)即可以有效降低IO的访问次数. B+数的高度h=logd(n),d越大,h越小,查询效率越高. 相对B树,B+树d可以很大,因为非叶子节点不存储数据,只存储key,在一个存储页上可以存储更多的key值.

MySQL InnoDB B+树索引

- - OurMySQL
B+树索引在DB中有一个特点就是高扇出性,一般在DB中B+树的高度在2-3层左右,也就意味着只需要2-3次的IO操作即可. 而现在的磁盘每秒差不多在100次IO左右,2-3次意味着查询时间只需0.02-0.03秒. InnoDB存储引擎表是索引组织表,即表中数据安装主键顺序存放. 而聚集索引就是按照每张表的主键构造一颗B+,并且叶节点存放着整张表的行记录数据,因此也让聚集索引也是索引的一部分.

[转] Mysql索引的问答

- - 数据库 - ITeye博客
相信很多人对于MySQL的索引都不陌生,索引(Index)是帮助MySQL高效获取数据的数据结构. 因为索引是MySQL中比较重点的知识,相信很多人都有一定的了解,尤其是在面试中出现的频率特别高. 楼主自认为自己对MySQL的索引相关知识有很多了解,而且因为最近在找工作面试,所以单独复习了很多关于索引的知识.