贝叶斯推断及其互联网应用(一)

标签: IT | 发表时间:2011-08-25 12:09 | 作者:(author unknown) ArBing
出处:http://www.ruanyifeng.com/blog/

一年前的这个时候,我正在翻译Paul Graham的《黑客与画家》

那本书大部分谈的是技术哲学,但是第八章却写了一个非常具体的技术问题----如何使用贝叶斯推断过滤垃圾邮件(英文版)?

说实话,我没完全看懂那一章。那时,交稿截止日期已经过了,没时间留给我去啃概率论教科书了。我只好硬着头皮,按照字面意思把它译了出来。虽然交稿了,译文质量也还可以,但是心里很不舒服,下决心一定要搞懂它。

一年过去了,我读了一些概率论文献,逐渐发现贝叶斯推断并没有想象的那么难。相反的,它的原理部分实际上很容易理解,甚至不需要用到高等数学。

下面就是我的学习笔记。需要声明的是,我并不是这方面的专家,数学其实是我的弱项。所以,欢迎大家提出宝贵意见,让我们共同学习和提高。

=====================================

贝叶斯推断及其互联网应用

作者:阮一峰

一、什么是贝叶斯推断

贝叶斯推断(Bayesian inference)是一种统计学方法,用来估计统计量的某种性质。

它是贝叶斯定理(Bayes' theorem)的应用。英国数学家托马斯·贝叶斯(Thomas Bayes)在1763年发表的一篇论文中,首先提出了这个定理。

贝叶斯推断与其他统计学推断方法截然不同。它建立在主观判断的基础上,也就是说,你可以不需要客观证据,先估计一个值,然后根据推断结果不断修正。正是因为它的主观性太强,曾经遭到许多统计学家的诟病。

贝叶斯推断需要大量的计算,因此历史上很长一段时间,无法得到广泛应用。只有等到计算机诞生以后,它才获得真正的重视。人们发现,许多统计量是无法事先进行客观判断的,而互联网时代出现的大型数据集,再加上高速运算能力,为验证这些统计量提供了方便,也为应用贝叶斯推断创造了条件,它的威力正在日益显现。

二、贝叶斯定理

要理解贝叶斯推断,就必须先理解贝叶斯定理。后者实际上就是计算"条件概率"的公式。

所谓"条件概率"(Conditional probability),就是指在事件B发生的情况下,事件A发生的概率,用P(A|B)来表示。

根据文氏图,可以很清楚地看到在事件B发生的情况下,事件A发生的概率就是P(A∩B)除以P(B)。

因此,

同理可得,

所以,

这就是条件概率的计算公式。

三、全概率公式

由于后面要用到,所以除了条件概率以外,这里还要推导全概率公式。

假定样本空间S,是两个事件A与A'的和。

上图中,红色部分是事件A,绿色部分是事件A',它们共同构成了样本空间S。

在这种情况下,事件B可以划分成两个部分。

在上一节的推导当中,我们已知

所以,

这就是全概率公式。它的含义是,如果A和A'构成样本空间的一个划分,那么事件B的概率,就等于A和A'的概率分别乘以B的条件概率之和。

将这个公式代入上一节的条件概率公式,就得到了条件概率的另一种写法:

四、贝叶斯推断的含义

对条件概率公式进行变形,可以得到如下形式:

我们把P(A)称为"先验概率"(Prior probability),即在B事件发生之前,我们对A事件概率的一个判断。P(A|B)称为"后验概率"(Posterior probability),即在B事件发生之后,我们对A事件概率的重新评估。P(B|A)/P(B)称为"可能性函数"(Likelyhood),这是一个调整因子,使得预估概率更接近真实概率。

所以,条件概率可以理解成下面的式子:

\mbox{Posterior probability} \propto \mbox{Prior probability} \times \mbox{Likelihood}

这就是贝叶斯推断的含义。我们先预估一个"先验概率",然后加入实验结果,看这个实验到底是增强还是削弱了"先验概率",由此得到更接近事实的"后验概率"。

在这里,如果"可能性函数"P(B|A)/P(B)>1,意味着"先验概率"被增强,事件A的发生的可能性变大;如果"可能性函数"=1,意味着B事件无助于判断事件A的可能性;如果"可能性函数"<1,意味着"先验概率"被削弱,事件A的可能性变小。

五、【例子】水果糖问题

为了加深对贝叶斯推断的理解,我们看两个例子。

第一个例子。两个一模一样的碗,一号碗有30颗水果糖和10颗巧克力糖,二号碗有水果糖和巧克力糖各20颗。现在随机选择一个碗,从中摸出一颗糖,发现是水果糖。请问这颗水果糖来自一号碗的概率有多大?

我们假定,H1表示一号碗,H2表示二号碗。由于这两个碗是一样的,所以P(H1)=P(H2),也就是说,在取出水果糖之前,这两个碗被选中的概率相同。因此,P(H1)=0.5,我们把这个概率就叫做"先验概率",即没有做实验之前,来自一号碗的概率是0.5。

再假定,E表示水果糖,所以问题就变成了在已知E的情况下,来自一号碗的概率有多大,即求P(H1|E)。我们把这个概率叫做"后验概率",即在E事件发生之后,对P(H1)的修正。

根据条件概率公式,得到

已知,P(H1)等于0.5,P(E|H1)为一号碗中取出水果糖的概率,等于0.75,那么求出P(E)就可以得到答案。根据全概率公式,

所以,

将数字代入原方程,得到

这表明,来自一号碗的概率是0.6。也就是说,取出水果糖之后,H1事件的可能性得到了增强。

六、【例子】假阳性问题

第二个例子是一个医学的常见问题,与现实生活关系紧密。

已知某种疾病的发病率是0.001,即1000人中会有1个人得病。现有一种试剂可以检验患者是否得病,它的准确率是0.99,即在患者确实得病的情况下,它有99%的可能呈现阳性。它的误报率是5%,即在患者没有得病的情况下,它有5%的可能呈现阳性。现有一个病人的检验结果为阳性,请问他确实得病的可能性有多大?

假定A事件表示得病,那么P(A)为0.001。这就是"先验概率",即没有做试验之前,我们预计的发病率。再假定B事件表示阳性,那么要计算的就是P(A|B)。这就是"后验概率",即做了试验以后,对发病率的估计。

根据条件概率公式,

用全概率公式改写分母,

将数字代入,

我们得到了一个惊人的结果,P(A|B)约等于0.019。也就是说,即使检验呈现阳性,病人得病的概率,也只是从0.1%增加到了2%左右。这就是所谓的"假阳性",即阳性结果完全不足以说明病人得病。

为什么会这样?为什么这种检验的准确率高达99%,但是可信度却不到2%?答案是与它的误报率太高有关。(【习题】如果误报率从5%降为1%,请问病人得病的概率会变成多少?)

有兴趣的朋友,还可以算一下"假阴性"问题,即检验结果为阴性,但是病人确实得病的概率有多大。然后问自己,"假阳性"和"假阴性",哪一个才是医学检验的主要风险?

===================================

关于贝叶斯推断的原理部分,今天就讲到这里。下一次,将介绍如何使用贝叶斯推断过滤垃圾邮件。

(未完待续)

文档信息

相关 [互联网 应用] 推荐:

互联网时代的应用设计

- james - 所有文章 - UCD大社区
在互联网时代如何开发一个成功的应用. 先发放一万份调查问卷,找几十个人关在黑屋子里花两年时间研发,然后期待着一旦推出就颠覆整个互联网. 我不得不抱歉地说,以这样一种方式研发一款互联网应用,在互联网时代已经不太适用. 互联网应用单纯地从和传统应用的运行环境下的不同所带来的差异就足够决定互联网应用并不是把传统应用简单地搬到网上.

谈移动互联网应用

- - 人月神话的BLOG
周末参加了pmcaff组织的产品经理峰会,里面有个主题是谈移动互联网应用相关的,对这块个人没有做过,只能简单谈下个人的一些想法. 讨论中提到的一点,移动互联网应用和市场增速会很快,是传统互联网的多少倍不好说,但是简单以现有移动互联网的规模来讲,2-3年时间5-10倍的增速是完全可能的,毕竟当前的移动互联网的规模毕竟小.

企业应用开发与互联网应用开发区别

- - 行业应用 - ITeye博客
注:转自 http://timeson.iteye.com/blog/609045. 新形式下的企业应用特点: . 企业应用系统从封闭走向开放,由局域网转到互联网,随着涉众面的极大扩展,新的企业应用要求多浏览器支持(IE,FireFox),国际化支持,全球业务的互联互通. 这样就要求企业应用不能满足简单的表单、表格、树、菜单;而是要求有较好的用户体验,提倡富互联网应用.

开放、平台:应用层变成互联网本身

- Yuli - It Talks--上海魏武挥的博客
在DOS系统刚刚向Windows系统转换的时候,我有一度相当不习惯. 比如说,我很难理解计算机桌面上的东西,居然不是根目录下的东西. 图形化界面很方便使用者,这是实情. 但同样的,图形化界面也是一种傻瓜化的操作界面,越来越多的人,知其然而不知其所以然. 如果电脑上不预装windows系统,我真得很怀疑,还有多少人会使用电脑.

移动互联网应用栏目开通

- helloyj - 月光博客
  由于目前月光博客上关于移动互联网的应用介绍越来越多,因此我打算开辟一个移动互联网应用推荐的栏目:“移动应用观察”,专门介绍优秀的移动互联网应用.   移动应用观察栏目介绍的应用以iPhone、iPad、Android应用为主,主要介绍免费应用和较高质量的付费应用,同时给出该应用在苹果、谷歌官方应用商店的下载链接地址.

移动互联网应用的推广方法

- RobinsonNie - 互联网的那点事
本期极客攻略由OAKMIKEOAK撰写. 在上期极客活动“百万级应用是怎样炼成的”上,多家百万级应用的拥有者和助力军分享了自己眼中百万级应用的炼就过程. 那么对于实际开发者来说,如何才能在众多的应用中脱颖而出. 目前,主流移动互联网应用平台包括iOS,Android,Palm,Blackberry,webOS,Windows Mobile六大平台.

最新移动互联网应用推荐第五期『2011.01』

- mgo - 天涯海阁-Web2.0Share
友录通讯录是一款手机通讯录增强应用,以强劲的查找和一系列精妙的小功能,提升打电话、发短信等日常操作的效率和体验. 支持联系人分组,联系人同步到服务器端. 不过个人目前还不太愿意将联系人同步到除Google以外的服务商. 各平台下载:Touch/iPhone;Android;S60 V3/V5. 2.街旁iPhone原生客户端.

贝叶斯推断及其互联网应用(一)

- ArBing - 阮一峰的网络日志
一年前的这个时候,我正在翻译Paul Graham的《黑客与画家》. 那本书大部分谈的是技术哲学,但是第八章却写了一个非常具体的技术问题----如何使用贝叶斯推断过滤垃圾邮件(英文版). 说实话,我没完全看懂那一章. 那时,交稿截止日期已经过了,没时间留给我去啃概率论教科书了. 我只好硬着头皮,按照字面意思把它译了出来.