[转]HBase简介
1.1 概述
Hbase是一个分布式开源数据库,基于Hadoop分布式文件系统,模仿并提供了基于Google文件系统的Bigtable数据库的所有功能。其目标是处理非常庞大的表,可以用普通的计算机处理超过10亿行数据,并且有数百万列元素组成的数据表。Hbase可以直接使用本地文件系统或者Hadoop作为数据存储方式,不过为了提高数据可靠性和系统的健壮性,发挥Hbase处理大数据量等功能,需要使用Hadoop作为文件系统。
Google BigTable论文中BigTable的定义:Bigtable是一个疏松的分布式的持久的多维排序的map,这个map被行键,列键,和时间戳索引.每一个值都是无解释数组.(A Bigtable is a sparse, distributed, persistent multidimensional sorted map. The map is indexed by a row key, column key, and a timestamp; each value in the map is an uninterpreted array of bytes.)
1.2 数据模型
Hbase是一个类似Bigtable的分布式数据库,大部分特性和Bigtable一样,是一个稀疏的,长期存储的,多维度的,排序的映射表。这张表的索引是行关键字,列关键字和时间戳。每个值是一个不解释的字符数组,数据都是字符串,没类型。
HBASE中的每一张表,就是所谓的BigTable。BigTable会存储一系列的行记录,行记录有三个基本类型的定义:Row Key,Time Stamp,Column。Row Key是行在BigTable中的唯一标识,Time Stamp是每次数据操作对应关联的时间戳。用户在表格中存储数据,每一行都有一个可排序的主键和任意多的列。由于 是稀疏存储的,所以同一张表里面的每一行数据都可以有截然不同的列。Column定义为"<family>:<label>",通过这两部分可以唯一的指定一个数据的存储列,family的定义和修改需要对HBASE作类似于DB的DDL操作,而对于label的使用,则不需要定义直接可以使用,这也为动态定制列提供了一种手段。family另一个作用其实在于物理存储优化读写操作,同family的数据物理上保存的会比较临近,因此在业务设计的过程中可以利用这个特性。Hbase把同一个family里面的数据存储在同一个目录底下,而Hbase的写操作是锁行的,每一行都是一个原子元素,都可以加锁。
HBase在物理距离比较近的磁盘上储存列组,所以同一列组中的元素要有完全一样的读/写特性并且包含的数据也要相似。
所有数据库的更新都有一个时间戳标记,每个更新都是一个新的版本,而hbase会保留一定数量的版本,这个值是可以设定的。客户端可以选择获取距离某个时间最近的版本,或者一次获取所有版本。
下面我们分别看一下逻辑数据模型和物理数据模型。
1) 逻辑数据模型
一个表可以想象成一个大的映射关系,通过主键,或者主键+时间戳,可以定位一行数据,由于是稀疏数据,所以某些列可以是空白的,下面就是数据的概念视图(逻辑数据模型):
Row Key |
Time Stamp |
Column "contents:" |
Column "anchor:" |
Column "mime:" |
|
"com.cnn.www" |
t9 |
|
"anchor:cnnsi.com " |
"CNN" |
|
t8 |
|
"anchor:my.look.ca" |
"CNN.com" |
|
|
t6 |
"<html>..." |
|
|
"text/html" |
|
t5 |
"<html>..." |
|
|
|
|
t3 |
"<html>..." |
|
|
|
上图是一个存储Web网页的范例列表片断。行名是一个反向URL{即com.cnn.www}。contents列族{原文用 family,译为族,详见 列族}存放网页内容,anchor列族存放引用该网页的锚链接文本。CNN的主页被Sports Illustrater{即所谓SI,CNN的王牌体育节目}和MY-look的主页引用,因此该行包含了名叫“anchor:cnnsi.com”和 “anchhor:my.look.ca”的列。每个锚链接只有一个版本{由时间戳标识,如t9,t8};而contents列则有三个版本,分别由时间戳t3,t5,和t6标识。
每一行的唯一标识为com.cnn.www,每一次逻辑修改都有一个timestamp关联对应,一共有四个列定义:<contents:>,<anchor:cnnsi.com>,<anchor:my.look.ca>,<mime:>。如果用传统的概念来将BigTable作解释,那么BigTable可以看作一个DB Schema,每一个Row就是一个表,Row key就是表名,这个表根据列的不同可以划分为多个版本,同时每个版本的操作都会有时间戳关联到操作的行。
每一个行可以多个family,每一个family可以包含无数个Column,每一个Column都可以有一个不同于其他列的时间戳。在通用数据库中当表创建时我们就已经定义了列,如果修改表结构的话会非常困难(比如:添加一列)。在HBase中我们可以很轻松地添加一个列族或列。
2) 物理数据模型
虽然从逻辑模型来看每个表格是由很多行组成,但是在物理存储上面,它是按照列来保存的,这点在数据设计和程序开发的时候必须牢记。
上面的逻辑模型在物理存储的时候应该表现成下面那样子:
Row Key |
Time Stamp |
Column "contents:" |
"com.cnn.www" |
t6 |
"<html>..." |
t5 |
"<html>..." |
|
t3 |
"<html>..." |
Row Key |
Time Stamp |
Column "anchor:" |
|
"com.cnn.www" |
t9 |
"anchor:cnnsi.com" |
"CNN" |
t8 |
"anchor:my.look.ca" |
"CNN.com" |
Row Key |
Time Stamp |
Column "mime:" |
"com.cnn.www" |
t6 |
"text/html" |
需要注意的是在概念视图上面有些列是空白的,这样的列实际上并不会被存储,当请求这些空白的单元格的时候,会返回null值。如果在查询的时候不提供时间戳,那么会返回距离现在最近的那一个版本的数据。因为在存储的时候,数据会按照时间戳排序。
物理数据模型其实就是将逻辑模型中的一个Row分割成为根据Column family存储的物理模型。
对于BigTable的数据模型操作的时候,会锁定Row,并保证Row的原子操作。