内存数据库FastDB和SQLite性能测评

标签: 内存 数据库 fastdb | 发表时间:2013-06-21 12:20 | 作者:chexlong
出处:http://blog.csdn.net

原文链接


一、引言

在很多项目中,经常会碰到这样的需求,需要对大量数据进行快速存储、查询、删除等操作,特别是在一些针对诸如运营商、银行等大型企业的应用中,这些需求尤为常见。比如智能网中的大量在线并发用户的数据管理、软交换平台中的在线信息交互、宽带/3G等数据网中在线用户行为记录等等。

针对这些情形,我们通常需要选择高性能的数据库产品,而且通常需要使用内存数据库,顾名思义,内存数据库指的是所有的数据访问控制都在内存中进行,这是与磁盘数据库相对而言的,磁盘数据库虽然也有一定的缓存机制,但都不能避免从外设到内存的交换,而这种交换过程对性能的损耗是致命的,目前主流数据库如SYBASE、ORACLE等都有这种缓存机制,如将特定表绑定一定的缓存,从而在一定程度上改善数据吞吐性能。而内存数据库几乎可以完全避免这种内外存数据交换的发生,特别是在物理内存足够大的设备上尤其如此,通常这种数据库也被称为主存数据库(Main Memory DataBase, MMDB)。

二、主存数据库比较

目前比较知名的商业内存数据库有,ORACLE的TimesTen,MCObject的eXtremeDB、韩国的Altibase等,这些数据库产品性能都非常的强劲,当然价格也相当的强劲,在非特大型系统建设时,通常让人望而却步。于是退而求其次,免费开源内存数据库给了我们第二种选择。 Berkeley DB,SQLite,MonetDB,FastDB,H2等,不一而足。本文主要针对SQLite和FastDB进行性能测评。

2.1 测试准备

首先,笔者通过对评测数据的调研发现,通常认为,BDB性能不如SQLite,参考 “免费的实时数据库,我们该选谁?—-BerkeleyDB与SQLite评测对比 ”

上文中还提到,“据说FastDB很快,但数据库大小不能大于物理内存…”,于是笔者对FastDB产生了兴趣,从FastDB作者的网站看到关于这点的介绍,并不是说数据库大小不能大于物理内存,而是说数据库大小超过物理内存时,性能与不超过时相比会有一定的降低(降低幅度未作说明,估计是不推荐使用)。幸运地是,目前物理内存实在说不上贵,服务器内存在10G之上都是很正常的事情了。因此可以根据具体项目数据量需求来确定是否能使用 FastDB,比如并不是所有的表都需要放在内存中。下面即将描述的测试表明,一旦使用FastDB,其性能在免费MMDB产品中绝对可执牛耳。由于已经有人对BDB和SQLite进行过比较,因此下面仅将FastDB与其中的优胜者SQLite进行性能测评。SQLite采用内存模式,即打开数据库使使用“:memory:”参数,此时SQLite不产生数据库文件,所有操作都在内存中,这一点需要特殊说明,与之不同的是,FastDB有两种模式,磁盘模式和无盘模式,前者会产生磁盘文件,后者则与SQLite的内存模式相同。

说是测评,其实过程也很简单,无非是设计测试CASE,编写测试CODE,输出测试RESULT,最后做出结论。通常我们认为带索引的插入耗时相对于查询和删除来说比较长,因此首先来看插入性能。采用一个简单的表来完成接下来的所有测试,表中仅包含两个字段,INTEGER intKey,和VARCHAR strKey。测试平台为Window7 32bit系统(Evaluation Copy 7127),编译器VC6 SP6。在DELL INSPIRON 640m上运行,CPU为Intel Core 2 CPU T5500 @ 1.66GHZ,内存2.5G。

对FastDB(采用磁盘模式),表结构的定义如下:

class _TestTable 

public: 
    db_int8 intKey; 
    char const* strKey; 
    TYPE_DESCRIPTOR((KEY(intKey, INDEXED), KEY(strKey, INDEXED))); 
};

REGISTER(_TestTable);

对SQLite,建表SQL如下:

CREATE TABLE [_TestTable] ( [intKey] INTEGER  NOT NULL PRIMARY KEY, [strKey] VARCHAR(50)  NULL)

2.2 不同事务模式下的插入性能比较

2.2.1 FastDB磁盘模式

我们首先按照批量事务处理的模式将intKey从1到nRecords(记录条数),并指定相应的strKey,分别调用相应的接口(均为原始 API)插入到两张表中,这里的批量事务处理模式指的是,比如插入10000条记录,插第一条之前开始事务,最后一条之后结束事务。此时在插入不同数目记录时的表现分别如下(一万条、十万条、72万条、一百万条):

批量事务提交:

E:\intrest\FastDB\PerfTest\Debug>PerfTest.exe 
[FASTDB] Elapsed time for inserting 10000 record: 63 ms 
[SQLITE] Elapsed time for inserting 10000 record: 639 ms

E:\intrest\FastDB\PerfTest\Debug>del *.fdb (清除测试生成数据,重新测试,下同。)

E:\intrest\FastDB\PerfTest\Debug>PerfTest.exe 
[FASTDB] Elapsed time for inserting 100000 record: 1186 ms 
[SQLITE] Elapsed time for inserting 100000 record: 6318 ms

E:\intrest\FastDB\PerfTest\Debug>del *.fdb

E:\intrest\FastDB\PerfTest\Debug>PerfTest.exe 
[FASTDB] Elapsed time for inserting 7200000 record: 152460 ms 
[SQLITE] Elapsed time for inserting 7200000 record: 560121 ms

E:\intrest\FastDB\PerfTest\Debug>PerfTest.exe 
[FASTDB] Elapsed time for inserting 1000000 record: 15522 ms 
[SQLITE] Elapsed time for inserting 1000000 record: 67423 ms

从上我们可以看出,在批量事务模式下,FastDB比SQLite的插入性能提高了3-10倍。但是在很多情况下,我们可能会需要逐条逐条的事务提交,下面给出了逐条事务模式的测试结果:

E:\intrest\FastDB\PerfTest\Debug>PerfTest.exe 
[FASTDB] Elapsed time for inserting 10000 record: 57315 ms(这个太恐怖了,不调整的话没法使用) 
[SQLITE] Elapsed time for inserting 10000 record: 780 ms

E:\intrest\FastDB\PerfTest\Debug>PerfTest.exe (SQLITE显式分条事务) 
[FASTDB] Elapsed time for inserting 10000 record: 59967 ms 
[SQLITE] Elapsed time for inserting 10000 record: 1154 ms

从上我们可以看出,FastDB在这种情形下的性能急遽降低,降到一个几乎不能接收的水平。经过对FastDB的源代码分析(开源的好处体现出来了),发现FastDB在每次事务提交时,都会将变更的数据内容同步到磁盘文件中(这是因为我们采用了磁盘模式),因此造成性能的显著降低。

直观上看,解决FastDB的这个问题有两种办法,一是避免每次事务提交时同步到磁盘,因为在这种应用中,这种同步操作并不需要实时进行,通常每隔一段时间同步一次就可以了(比如1S、1Min、等根据具体项目的可靠性需要);二是使用前面提到的FastDB无盘(DISKLESS)模式。

我们首先来看第一种方案,通过SEARCH FastDB文档(文档和社区是FastDB的一个软肋),我们发现作者已经考虑到了这个问题,FastDB为数据库提供了precommit的接口,用于完成除sync到磁盘文件外的所有事物操作,如释放mutex资源等。同时提供了backup接口,用来完成内存数据到磁盘文件的备份,甚至支持打开数据库时同时指定定时备份到磁盘文件的间隔。这样一来,每次事务提交的效率理论上会得到大大提高,并且通过定时备份机制可以保证数据的可靠性。我们来看使用 precommit进行逐条事务提交时FastDB的表现:

E:\intrest\FastDB\PerfTest\Debug>PerfTest(使用precommit逐条提交事务) 
[FASTDB] Elapsed time for inserting 10000 record: 62 ms 
[SQLITE] Elapsed time for inserting 10000 record: 1170 ms

E:\intrest\FastDB\PerfTest\Debug>PerfTest 
[FASTDB] Elapsed time for inserting 100000 record: 1170 ms 
[SQLITE] Elapsed time for inserting 100000 record: 11747 ms

E:\intrest\FastDB\PerfTest\Debug>PerfTest 
[FASTDB] Elapsed time for inserting 1000000 record: 8081 ms 
[SQLITE] Elapsed time for inserting 1000000 record: 125768 ms

从上可以看出,在逐条事务模式下,通过使用precommit技术,FastDB性能比SQLite提高了10倍左右。当然也许有读者怀疑加了备份机制之后的性能,确实笔者没有进行这项测试,但是,需要注意的是,FastDB在数据库关闭时会强制sync到磁盘文件,但SQLite没有这种功能,同时,在进行这项测试时,两种数据库都没有定时备份机制,因此该比较是公平的。

2.2.2 FastDB无盘模式

再来看第二种方案,FastDB采用无盘(通过编译选项控制生成DISKLESS版本)模式,此时FastDB初始化一段共享内存(shmat or mmap),这个初始大小通常很大,并且运行期不能扩展(无盘模式的劣势)。我们将初始共享内存设置为1G,得到的测试结果如下:

E:\intrest\FastDB\PerfTest\Debug>PerfTest.exe 
[FASTDB] Elapsed time for inserting 100000 record: 624 ms (批量事务提交) 
[SQLITE] Elapsed time for inserting 100000 record: 11544 ms

E:\intrest\FastDB\PerfTest\Debug>PerfTest.exe 
[FASTDB] Elapsed time for inserting 100000 record: 7410 ms (逐条事务提交) 
[SQLITE] Elapsed time for inserting 100000 record: 11560 ms

E:\intrest\FastDB\PerfTest\Debug>PerfTest.exe 
[FASTDB] Elapsed time for inserting 1000000 record: 134660 ms 
[SQLITE] Elapsed time for inserting 1000000 record: 120167 ms

E:\intrest\FastDB\PerfTest\Debug>PerfTest.exe 
[FASTDB] Elapsed time for inserting 250000 record: 23666 ms 
[SQLITE] Elapsed time for inserting 250000 record: 29110 ms

从上我们可以看出,无盘模式在大数据量下的表现与SQLite相近,这一点不是很好理解,需要研究DISKLESS的设计模式,理论上应该与 precommit模式性能相近。但是实践是检验真理的唯一标准。我们可以看出,磁盘模式的precommit方式性能表现卓越,不管从横向还是纵向来看。

2.3 查询性能比较

下面的比较都使用磁盘模式的precommit方式,再来看索引查询的性能表现,测试时都是先插入十万条数据后,再分别对该十万条数据进行查询,需要注意的是我们同时对FastDB是否增加HASH索引的性能进行了横向测评,FastDB增加HASH索引很简单,通过修改TYPE- DESCRIPTOR来完成,上面的class中改为TYPE_DESCRIPTOR((KEY(intKey, INDEXED), KEY(strKey, INDEXED)));即为intKey增加了Hash索引。

E:\intrest\FastDB\PerfTest\Debug>perftest (FASTDB哈希索引) 
[FASTDB] Elapsed time for inserting 100000 record: 624 ms 
[FASTDB] Elapsed time for 100000 index searches: 328 ms 
[SQLITE] Elapsed time for inserting 100000 record: 10312 ms 
[SQLITE] Elapsed time for 100000 index searches: 10935 ms

E:\intrest\FastDB\PerfTest\Debug>perftest(FASTDB非哈希索引) 
[FASTDB] Elapsed time for inserting 100000 record: 577 ms 
[FASTDB] Elapsed time for 100000 index searches: 515 ms 
[SQLITE] Elapsed time for inserting 100000 record: 10343 ms 
[SQLITE] Elapsed time for 100000 index searches: 9532 ms

从测试结果可以看出,查询十万条索引记录的效率,FastDB要比SQLite快20倍左右,并且在增加HASH索引后能够得到进一步的改善。

2.4 删除性能比较及综合表现

最后,我们在测试删除效率时,同时综合来看FastDB与SQLite之间插入、查询、删除的性能表现:

插入、查询、删除综合比较:

E:\intrest\FastDB\PerfTest\Debug>perftest(批量删除,FASTDB.removeall(),SQLITE.delete*)
[FASTDB] Elapsed time for inserting 100000 record: 608 ms 
[FASTDB] Elapsed time for 100000 index searches: 687 ms 
[FASTDB] Elapsed time for deleting all 100000 records: 16 ms 
[SQLITE] Elapsed time for inserting 100000 record: 11107 ms 
[SQLITE] Elapsed time for 100000 index searches: 10062 ms 
[SQLITE] Elapsed time for deleting all 100000 records: 16 ms

E:\intrest\FastDB\PerfTest\Debug>perftest(逐条删除) 
[FASTDB] Elapsed time for inserting 100000 record: 593 ms 
[FASTDB] Elapsed time for 100000 index searches: 562 ms 
[FASTDB] Elapsed time for deleting all 100000 records one by one: 905 ms 
[SQLITE] Elapsed time for inserting 100000 record: 10406 ms 
[SQLITE] Elapsed time for 100000 index searches: 10249 ms 
[SQLITE] Elapsed time for deleting all 100000 records one by one: 8923 ms

从上可以看出,就删除效率而言,批量删除的速度二者相近,而逐条删除时,十万条记录的删除累积,FastDB比SQLite快了10倍左右。

 

2.5 总结

优点:FastDB磁盘模式下,采用precommit方式,性能远远优于SQLite,并且FastDB提供了完善的备份恢复机制,能够保证数据安全。FastDB的无盘模式在小数据量时表现优越,并且不会产生磁盘数据文件,也不能加载已经保存的数据库文件,看起来更像是针对嵌入式设备(如智能手机、PDA等)开发的,对于这种场景可以考虑使用无盘模式。

缺点:FastDB目前能够SEARCH到的比较著名的应用是PingTel公司的开源统一通信产品SIPX,该产品采用的是FastDB的磁盘模式。这可能多少与FastDB的完全授权模式有关,而SQLite采用的是GPL的不允许闭源的商业发布。当然主要还是社区的不成熟,这从Google Trends的搜索结果也能看出。社区的不成熟会带来学习成本的增加,这一点在选型时也需要考虑。

作者:chexlong 发表于2013-6-21 12:20:39 原文链接
阅读:107 评论:0 查看评论

相关 [内存 数据库 fastdb] 推荐:

内存数据库FastDB和SQLite性能测评

- - CSDN博客数据库推荐文章
在很多项目中,经常会碰到这样的需求,需要对大量数据进行快速存储、查询、删除等操作,特别是在一些针对诸如运营商、银行等大型企业的应用中,这些需求尤为常见. 比如智能网中的大量在线并发用户的数据管理、软交换平台中的在线信息交互、宽带/3G等数据网中在线用户行为记录等等. 针对这些情形,我们通常需要选择高性能的数据库产品,而且通常需要使用内存数据库,顾名思义,内存数据库指的是所有的数据访问控制都在内存中进行,这是与磁盘数据库相对而言的,磁盘数据库虽然也有一定的缓存机制,但都不能避免从外设到内存的交换,而这种交换过程对性能的损耗是致命的,目前主流数据库如SYBASE、ORACLE等都有这种缓存机制,如将特定表绑定一定的缓存,从而在一定程度上改善数据吞吐性能.

VoltDB内存数据库分析

- - 淘宝核心系统团队博客
VoltDB是一个宣称性能超过Mysql 100倍的新型数据库. 它源自Micheal Stonebraker一篇论文H-Store. 在这篇论文发表后,Stonebraker成立了VoltDB公司带着他的一些学生开始在OLTP数据库领域打拼. Stonebraker从上世纪70年代——数据库刚开始发展的时间——就开始在数据库领域活跃,这样的老古董提出的数据库的新想法,给了整个存储领域很大的想象空间.

对内存数据库的使用已达临界点

- - InfoQ cn
微软的David Campbell在文章《 内存数据库即将到到临界点(The coming in-memory database tipping point)》中说到, 内存数据库离广泛采用越来越近了. 他还说明了微软在这个领域的策略. 据David所说,以下各种趋势使得内存数据库会在五年内变得普遍:.

内存数据库分析-装载整理

- - 人月神话的BLOG
转载整理自: http://titan.iteye.com/. 传统的数据库管理系统把所有数据都放在磁盘上进行管理,所以称做磁盘数据库(DRDB:Disk-Resident Database). 磁盘数据库需要频繁地访问磁盘来进行数据的操作,由于对磁盘读写数据的操作一方面要进行磁头的机械移动,另一方面受到系统调用(通常通过CPU中断完成,受到CPU时钟周期的制约)时间的影响,当数据量很大,操作频繁且复杂时,就会暴露出很多问题.

如何让NoSQL内存数据库适合企业级应用

- - CSDN博客数据库推荐文章
如何让NoSQL内存数据库适合企业级应用. 作者:chszs,转载需注明. 博客主页: http://blog.csdn.net/chszs. 英文原文: How to Make Your In-memory NoSQL Datastores Enterprise-Ready. 对于每一个关注用户体验的Web应用或移动应用而言,NoSQL内存数据库(例如开源的 Redis和Memcached)正逐步成为事实上的标准.

[转]内存数据库的几个典型应用场景

- - 小鸥的博客
近些年内存数据库(IMDB)技术发展迅猛. 除了与生俱来的高性能之外,IMDB本身越来越向着功能完整的独立DB的方向发展. 下面简单描述当前比较常见的几个IMDB应用场景,希望对有志于IMDB技术的同僚以启发——. IMDB最大规模的应用集中在电信领域,尤其以计费系统为主. 当然,近些年陆续开始向新的电信业务领域拓展,例如核心网、CRM、精确营销等.

内存参数设置不合理导致数据库HANG

- - CSDN博客数据库推荐文章
内存参数设置不合理导致数据库HANG. 2节点RAC,数据库忽然HANG住,重启一个实例后恢复正常. 故障时间段约为8:30-10:00,以下为alert报错:. Thread 2> ORA-07445: 出现异常错误: 核心转储 [kksMapCursor()+323] [SIGSEGV] [ADDR:0x8] [PC:0x763597B] [Address not mapped to object] [].

围绕着内存数据库的4个流言

- - 199IT互联网数据中心
作者Yiftach Shoolman是Redis Labs的联合创始人兼CTO,拥有着丰富的实践经验. Yiftach 之前曾是Crescendo Networks(后被F5收购)的总裁、创建者兼CTO,更早还是Native Networks的技术副总裁. 在本文中,Yiftach直述了当下开发者对内存数据库所存在的偏见,并提出了一些技术选型参考意见.

当内存512遇上Access数据库600M,IO磁盘受伤了

- - 博客园_首页
服务器内存就512M,Access数据库(文章库)600多M,结果竟然就是IO受伤了. 秋色园技术原理解析 系列,园里不少看过的帅歌,应该有点印象,从开始到现在,还是铁打的Access数据库. 虽然本人目前对Access恨入之骨,皆因囊中羞涩,暂时不得不与之同流合污. 忙碌 微博粉丝精灵几个月来, 秋色园一直运行正常,除了远程界面都变的很卡之外,基本上也没发现什么异常.

数据库sharding

- - 数据库 - ITeye博客
当团队决定自行实现sharding的时候,DAO层可能是嵌入sharding逻辑的首选位置,因为在这个层面上,每一个DAO的方法都明确地知道需要访问的数据表以及查询参数,借助这些信息可以直接定位到目标shard上,而不必像框架那样需要对SQL进行解析然后再依据配置的规则进行路由. 另一个优势是不会受ORM框架的制约.