Hadoop之MapReduce单元测试
- - ITeye博客通常情况下,我们需要用小数据集来单元测试我们写好的map函数和reduce函数. 而一般我们可以使用Mockito框架来模拟OutputCollector对象(Hadoop版本号小于0.20.0)和Context对象(大于等于0.20.0). 下面是一个简单的WordCount例子:(使用的是新API).
通常情况下,我们需要用小数据集来单元测试我们写好的map函数和reduce函数。而一般我们可以使用Mockito框架来模拟OutputCollector对象(Hadoop版本号小于0.20.0)和Context对象(大于等于0.20.0)。
下面是一个简单的WordCount例子:(使用的是新API)
在开始之前,需要导入以下包:
1.Hadoop安装目录下和lib目录下的所有jar包。
2.JUnit4
3.Mockito
map函数:
public class WordCountMapper extends Mapper<LongWritable, Text, Text, IntWritable> { private static final IntWritable one = new IntWritable(1); private Text word = new Text(); @Override protected void map(LongWritable key, Text value,Context context) throws IOException, InterruptedException { String line = value.toString(); // 该行的内容 String[] words = line.split(";"); // 解析该行的单词 for(String w : words) { word.set(w); context.write(word,one); } } }
reduce函数:
public class WordCountReducer extends Reducer<Text, IntWritable, Text, IntWritable> { @Override protected void reduce(Text key, Iterable<IntWritable> values,Context context) throws IOException, InterruptedException { int sum = 0; Iterator<IntWritable> iterator = values.iterator(); // key相同的值集合 while(iterator.hasNext()) { int one = iterator.next().get(); sum += one; } context.write(key, new IntWritable(sum)); } }
测试代码类:
public class WordCountMapperReducerTest { @Test public void processValidRecord() throws IOException, InterruptedException { WordCountMapper mapper = new WordCountMapper(); Text value = new Text("hello"); org.apache.hadoop.mapreduce.Mapper.Context context = mock(Context.class); mapper.map(null, value, context); verify(context).write(new Text("hello"), new IntWritable(1)); } @Test public void processResult() throws IOException, InterruptedException { WordCountReducer reducer = new WordCountReducer(); Text key = new Text("hello"); // {"hello",[1,1,2]} Iterable<IntWritable> values = Arrays.asList(new IntWritable(1),new IntWritable(1),new IntWritable(2)); org.apache.hadoop.mapreduce.Reducer.Context context = mock(org.apache.hadoop.mapreduce.Reducer.Context.class); reducer.reduce(key, values, context); verify(context).write(key, new IntWritable(4)); // {"hello",4} } }
具体就是给map函数传入一行数据-"hello"
map函数对数据进行处理,输出{"hello",0}
reduce函数接受map函数的输出数据,对相同key的值求和,并输出。