Hadoop之MapReduce单元测试

标签: hadoop mapreduce 单元测试 | 发表时间:2013-07-27 16:41 | 作者:
出处:http://www.iteye.com

通常情况下,我们需要用小数据集来单元测试我们写好的map函数和reduce函数。而一般我们可以使用Mockito框架来模拟OutputCollector对象(Hadoop版本号小于0.20.0)和Context对象(大于等于0.20.0)。

下面是一个简单的WordCount例子:(使用的是新API)

在开始之前,需要导入以下包:

1.Hadoop安装目录下和lib目录下的所有jar包。

2.JUnit4

3.Mockito

 

map函数:

public class WordCountMapper extends Mapper<LongWritable, Text, Text, IntWritable> {

	private static final IntWritable one = new IntWritable(1);
	private Text word = new Text();
	
	@Override
	protected void map(LongWritable key, Text value,Context context)
			throws IOException, InterruptedException {
		
		String line = value.toString();		// 该行的内容
		String[] words = line.split(";");	// 解析该行的单词
		
		for(String w : words) {
			word.set(w);
			context.write(word,one);
		}
	}
}

 reduce函数:

public class WordCountReducer extends Reducer<Text, IntWritable, Text, IntWritable> {

	@Override
	protected void reduce(Text key, Iterable<IntWritable> values,Context context)
			throws IOException, InterruptedException {
		
		int sum = 0;
		Iterator<IntWritable> iterator = values.iterator();		// key相同的值集合
		while(iterator.hasNext()) {
			int one = iterator.next().get();
			sum += one;
		}
		context.write(key, new IntWritable(sum));
	}

}

 测试代码类:

public class WordCountMapperReducerTest {

	@Test
	public void processValidRecord() throws IOException, InterruptedException {
		WordCountMapper mapper = new WordCountMapper();
		Text value = new Text("hello");
		org.apache.hadoop.mapreduce.Mapper.Context context = mock(Context.class);
		mapper.map(null, value, context);
		verify(context).write(new Text("hello"), new IntWritable(1));
	}
	
	@Test
	public void processResult() throws IOException, InterruptedException {
		WordCountReducer reducer = new WordCountReducer();
		Text key = new Text("hello");
		// {"hello",[1,1,2]}
		Iterable<IntWritable> values = Arrays.asList(new IntWritable(1),new IntWritable(1),new IntWritable(2));
		org.apache.hadoop.mapreduce.Reducer.Context context = mock(org.apache.hadoop.mapreduce.Reducer.Context.class);
		
		reducer.reduce(key, values, context);
		
		verify(context).write(key, new IntWritable(4));		// {"hello",4}
	}
}

 

具体就是给map函数传入一行数据-"hello"

map函数对数据进行处理,输出{"hello",0}

reduce函数接受map函数的输出数据,对相同key的值求和,并输出。



已有 0 人发表留言,猛击->> 这里<<-参与讨论


ITeye推荐



相关 [hadoop mapreduce 单元测试] 推荐:

Hadoop之MapReduce单元测试

- - ITeye博客
通常情况下,我们需要用小数据集来单元测试我们写好的map函数和reduce函数. 而一般我们可以使用Mockito框架来模拟OutputCollector对象(Hadoop版本号小于0.20.0)和Context对象(大于等于0.20.0). 下面是一个简单的WordCount例子:(使用的是新API).

Hadoop MapReduce技巧

- - 简单文本
我在使用Hadoop编写MapReduce程序时,遇到了一些问题,通过在Google上查询资料,并结合自己对Hadoop的理解,逐一解决了这些问题. Hadoop对MapReduce中Key与Value的类型是有要求的,简单说来,这些类型必须支持Hadoop的序列化. 为了提高序列化的性能,Hadoop还为Java中常见的基本类型提供了相应地支持序列化的类型,如IntWritable,LongWritable,并为String类型提供了Text类型.

下一代Hadoop MapReduce

- Jia - NoSQLFan
本文来自Hadoop Summit大会的一个演讲稿,主讲是Hadoop核心开发团队的Arun C Murthy (@acmurthy),同时他也是Yahoo!刚刚剥离的Hadoop独立公司Hortonworks的 Founder和架构师. 演讲中他讲述了现在的Hadoop存在的一些问题和集群上限,并展望了下一代Hadoop和其MapReduce将会得到的巨大提升.

"Hadoop/MapReduce/HBase"分享总结

- - ITeye博客
此分享是关于hadoop生态系统的简单介绍包括起源到相对应用. Hadoop和HBase.pdf (2.1 MB). 已有 0 人发表留言,猛击->> 这里<<-参与讨论. —软件人才免语言低担保 赴美带薪读研.

Hadoop MapReduce高级编程

- - 互联网 - ITeye博客
•combine函数把一个map函数产生的对(多个key, value)合并成一个新的. 将新的作为输入到reduce函数中,其格式与reduce函数相同. •这样可以有效的较少中间结果,减少网络传输负荷. •什么情况下可以使用Combiner.

[转]基于mapreduce的Hadoop join实现

- -
对于一个大数据的分析应用,join是必不可少的一项功能.现在很多构建与hadoop之上的应用,如Hive,PIG等在其内部实现了join程序,可以通过很简单的sql语句或者数据操控脚本完成相应的Join工作.那么join应该如何实现呢?今天我们就对join做一个简单的实现. 我们来看一个例子,现在有两组数据:一组为单位人员信息,如下:.

【Hadoop】MapReduce使用combiner优化性能

- - CSDN博客云计算推荐文章
当MapReduce模型中,reduce执行的任务为统计分类类型的值总量或去重后的数量,或最大值最小值时,可以考虑在Map输出后进行combine操作;这样可以减少网络传输带来的开销,同时减轻了reduce任务的负担. Combine操作是运行在每个节点上的,只会影响本地Map的输出结果;Combine的输入为本地map的输出结果(一般是数据在溢出到磁盘之前,可以减少IO开销),其输出则作为reduce的输入.

hadoop的IO和MapReduce优化参数

- - CSDN博客系统运维推荐文章
           在MapReduce执行过程中,特别是Shuffle阶段,尽量使用内存缓冲区存储数据,减少磁盘溢写次数;同时在作业执行过程中增加并行度,都能够显著提高系统性能,这也是配置优化的一个重要依据.            下面分别介绍I/O属性和MapReduce属性这两个类的部分属性,并指明其优化方向.

Hadoop MapReduce编程入门案例

- - CSDN博客云计算推荐文章
Hadoop入门例程简析中. (下面的程序下载地址: http://download.csdn.net/detail/zpcandzhj/7810829). (1)Hadoop新旧API的区别. 新的API倾向于使用虚类(抽象类),而不是接口,因为这更容易扩展. 例如,可以无需修改类的实现而在虚类中添加一个方法(即用默认的实现).

提高hadoop的mapreduce job效率

- - 数据库 - ITeye博客
hadoop 的mapreduce 的作业在运行过程中常常碰到一些这样的情 况:. 每一个map或者reduce只有30-40秒钟就结束. 超 大规模的job 时,通常会需要大量的map和reduce的slots 支持,但是job运行起来后,running的map和reduce并没有沾满集群的可用slots.