开源Python网络爬虫框架Scrapy

标签: 搜索引擎 | 发表时间:2014-06-20 19:17 | 作者:互联网实践
出处:http://blog.sina.com.cn/netreview

介绍:

所谓网络爬虫,就是一个在网上到处或定向抓取数据的程序,当然,这种说法不够专业,更专业的描述就是,抓取特定网站网页的HTML数据。不过由于一个网站的网页很多,而我们又不可能事先知道所有网页的URL地址,所以,如何保证我们抓取到了网站的所有HTML页面就是一个有待考究的问题了。

一般的方法是,定义一个入口页面,然后一般一个页面会有其他页面的URL,于是从当前页面获取到这些URL加入到爬虫的抓取队列中,然后进入到新新页面后再递归的进行上述的操作,其实说来就跟深度遍历或广度遍历一样。

上面介绍的只是爬虫的一些概念而非搜索引擎,实际上搜索引擎的话其系统是相当复杂的,爬虫只是搜索引擎的一个子系统而已。下面介绍一个开源的爬虫框架Scrapy。

一、概述

Scrapy是一个用 Python 写的 Crawler Framework ,简单轻巧,并且非常方便,并且官网上说已经在实际生产中在使用了,不过现在还没有 Release 版本,可以直接使用他们的 Mercurial 仓库里抓取源码进行安装。

Scrapy 使用 Twisted 这个异步网络库来处理网络通讯,架构清晰,并且包含了各种中间件接口,可以灵活的完成各种需求。整体架构如下图所示:

image

绿线是数据流向,首先从初始 URL 开始,Scheduler 会将其交给 Downloader 进行下载,下载之后会交给 Spider 进行分析,Spider 分析出来的结果有两种:一种是需要进一步抓取的链接,例如之前分析的“下一页”的链接,这些东西会被传回 Scheduler ;另一种是需要保存的数据,它们则被送到 Item Pipeline 那里,那是对数据进行后期处理(详细分析、过滤、存储等)的地方。另外,在数据流动的通道里还可以安装各种中间件,进行必要的处理。

二、组件

1、Scrapy Engine(Scrapy引擎)

Scrapy引擎是用来控制整个系统的数据处理流程,并进行事务处理的触发。更多的详细内容可以看下面的数据处理流程。

2、Scheduler(调度)

调度程序从Scrapy引擎接受请求并排序列入队列,并在Scrapy引擎发出请求后返还给他们。

3、Downloader(下载器)

下载器的主要职责是抓取网页并将网页内容返还给蜘蛛( Spiders)。

4、Spiders(蜘蛛)

蜘蛛是有Scrapy用户自己定义用来解析网页并抓取制定URL返回的内容的类,每个蜘蛛都能处理一个域名或一组域名。换句话说就是用来定义特定网站的抓取和解析规则。

蜘蛛的整个抓取流程(周期)是这样的:

  1. 首先获取第一个URL的初始请求,当请求返回后调取一个回调函数。第一个请求是通过调用start_requests()方法。该方法默认从start_urls中的Url中生成请求,并执行解析来调用回调函数。
  2. 在回调函数中,你可以解析网页响应并返回项目对象和请求对象或两者的迭代。这些请求也将包含一个回调,然后被Scrapy下载,然后有指定的回调处理。
  3. 在回调函数中,你解析网站的内容,同程使用的是Xpath选择器(但是你也可以使用BeautifuSoup, lxml或其他任何你喜欢的程序),并生成解析的数据项。
  4. 最后,从蜘蛛返回的项目通常会进驻到项目管道。

5、Item Pipeline(项目管道)

项目管道的主要责任是负责处理有蜘蛛从网页中抽取的项目,他的主要任务是清晰、验证和存储数据。当页面被蜘蛛解析后,将被发送到项目管道,并经过几个特定的次序处理数据。每个项目管道的组件都是有一个简单的方法组成的Python类。他们获取了项目并执行他们的方法,同时他们还需要确定的是是否需要在项目管道中继续执行下一步或是直接丢弃掉不处理。

项目管道通常执行的过程有:

  1. 清洗HTML数据
  2. 验证解析到的数据(检查项目是否包含必要的字段)
  3. 检查是否是重复数据(如果重复就删除)
  4. 将解析到的数据存储到数据库中

6、Downloader middlewares(下载器中间件)

下载中间件是位于Scrapy引擎和下载器之间的钩子框架,主要是处理Scrapy引擎与下载器之间的请求及响应。它提供了一个自定义的代码的方式来拓展 Scrapy的功能。下载中间器是一个处理请求和响应的钩子框架。他是轻量级的,对Scrapy尽享全局控制的底层的系统。

7、Spider middlewares(蜘蛛中间件)

蜘蛛中间件是介于Scrapy引擎和蜘蛛之间的钩子框架,主要工作是处理蜘蛛的响应输入和请求输出。它提供一个自定义代码的方式来拓展Scrapy的功能。蛛中间件是一个挂接到Scrapy的蜘蛛处理机制的框架,你可以插入自定义的代码来处理发送给蜘蛛的请求和返回蜘蛛获取的响应内容和项目。

8、Scheduler middlewares(调度中间件)

调度中间件是介于Scrapy引擎和调度之间的中间件,主要工作是处从Scrapy引擎发送到调度的请求和响应。他提供了一个自定义的代码来拓展Scrapy的功能。

三、数据处理流程

Scrapy的整个数据处理流程有Scrapy引擎进行控制,其主要的运行方式为:

  1. 引擎打开一个域名,时蜘蛛处理这个域名,并让蜘蛛获取第一个爬取的URL。
  2. 引擎从蜘蛛那获取第一个需要爬取的URL,然后作为请求在调度中进行调度。
  3. 引擎从调度那获取接下来进行爬取的页面。
  4. 调度将下一个爬取的URL返回给引擎,引擎将他们通过下载中间件发送到下载器。
  5. 当网页被下载器下载完成以后,响应内容通过下载中间件被发送到引擎。
  6. 引擎收到下载器的响应并将它通过蜘蛛中间件发送到蜘蛛进行处理。
  7. 蜘蛛处理响应并返回爬取到的项目,然后给引擎发送新的请求。
  8. 引擎将抓取到的项目项目管道,并向调度发送请求。
  9. 系统重复第二部后面的操作,直到调度中没有请求,然后断开引擎与域之间的联系。

安装:

Scrapy是一个快速,高层次的屏幕抓取和web抓取框架,用于抓取web站点并从页面中提取结构化的数据。Scrapy用途广泛,可以用于数据挖掘、监测和自动化测试。Scrapy吸引人的地方在于它是一个框架,任何人都可以根据需求方便的修改。它也提供了多种类型爬虫的基类,如 BaseSpider、sitemap爬虫等,最新版本又提供了web2.0爬虫的支持。

下面介绍Scrapy在windows下的安装:

首先下载windows版: Scrapy-0.15.0.2842.win32.exe,直接安装。

安装之后不能直接运行scrapy提供的test,会提示错误,因为scrapy基于其他一些python库,需要把这些库都安装才行。

Twisted:Twisted Matrix 是一种用来进行网络服务和应用程序编程的纯 Python 框架,虽然 Twisted Matrix 中有大量松散耦合的模块化组件,但该框架的中心概念还是非阻塞异步服务器这一思想。Twisted的安装也非常简单,在这里直接下载windows平台下的相应版本即可: http://pypi.python.org/packages/2.7/T/Twisted/

zope.interface:在这里下载 http://pypi.python.org/pypi/zope.interface/3.8.0#downloads。zope.interface没有提供windows平台下的exe版,只提供了windows平台下的egg包。

ez_setup:下载 http://pypi.python.org/pypi/ez_setup,安装。将egg文件放置在{python安装目录}\Scripts目录下。

打开CMD并切换至scripts目录,easy_install zope.interface-3.8.0-py2.6-win32.egg安装。

w3lib:zope.interface问题解决之后还会提示缺少w3lib,下载 http://pypi.python.org/pypi/w3lib后安装即可

libxml2:使用scrapy的html解析功能时,会提示你缺少libxml2,所以我们先把这个也装上,地址 http://xmlsoft.org/sources/win32/python/,下载相应的版本即可。

至此就可以使用Scrapy玩spider了,大家可以根据文档写一个简单的爬虫试试,实际上使用scrapy做一个简易的爬虫甚至只需要几行代码就可以了,以后有空再详细说说使用方法,本文不做更多描述。

入门:

本文参考Scrapy Tutorial里面的文档,翻译出来加上自己的理解,供大家学习。

在本文中,我们将学会如何使用Scrapy建立一个爬虫程序,并爬取指定网站上的内容,这一切在Scrapy框架内实现将是很简单轻松的事情。

本教程主要内容包括一下四步:

1. 创建一个新的Scrapy Project
2. 定义你需要从网页中提取的元素Item
3. 实现一个Spider类,通过接口完成爬取URL和提取Item的功能
4. 实现一个Item PipeLine类,完成Item的存储功能

新建工程

首先,为我们的爬虫新建一个工程,首先进入一个目录(任意一个我们用来保存代码的目录),执行:

[python] view plain copy

  1. scrapy startproject Domz 

最后的Domz就是项目名称。这个命令会在当前目录下创建一个新目录Domz,结构如下:

[python] view plain copy

  1. dmoz/ 
  2.    scrapy.cfg    
  3.    dmoz/ 
  4.        __init__.py 
  5.        items.py 
  6.        pipelines.py 
  7.        settings.py 
  8.        spiders/ 
  9.            __init__.py 

scrapy.cfg: 项目配置文件

items.py: 需要提取的数据结构定义文件
pipelines.py: 管道定义,用来对items里面提取的数据做进一步处理,如保存等
settings.py: 爬虫配置文件
spiders: 放置spider的目录

定义Item

在items.py里面定义我们要抓取的数据:

[python] view plain copy

  1. from scrapy.item import Item, Field 
  2. class DmozItem(Item): 
  3.    title = Field() 
  4.    link = Field() 
  5.    desc = Field() 

这里我们需要获取dmoz页面上的标题,链接,描述,所以定义一个对应的items结构,不像Django里面models的定义有那么多种类的Field,这里只有一种就叫Field(),再复杂就是Field可以接受一个default值。

实现Spider

spider只是一个继承字scrapy.spider.BaseSpider的Python类,有三个必需的定义的成员

name: 名字,这个spider的标识
start_urls: 一个url列表,spider从这些网页开始抓取
parse(): 一个方法,当start_urls里面的网页抓取下来之后需要调用这个方法解析网页内容,同时需要返回下一个需要抓取的网页,或者返回items列表

所以在spiders目录下新建一个spider,dmoz_spider.py:

[python] view plain copy

  1. class DmozSpider(BaseSpider): 
  2.    name = "dmoz.org"
  3.    start_urls = [ 
  4. "http://www.dmoz.org/Computers/Programming/Languages/Python/Books/", 
  5. "http://www.dmoz.org/Computers/Programming/Languages/Python/Resources/"
  6.    ] 
  7. def parse(self, response): 
  8.        filename = response.url.split("/")[-2] 
  9.        open(filename, 'wb').write(response.body) 

提取Item

提取数据到Items里面,主要用到XPath提取网页数据:

scrapy有提供两个XPath选择器,HtmlXPathSelector和XmlXPathSelector,一个用于HTML,一个用于XML,XPath选择器有三个方法

select(xpath): 返回一个相对于当前选中节点的选择器列表(一个XPath可能选到多个节点)
extract(): 返回选择器(列表)对应的节点的字符串(列表)
re(regex): 返回正则表达式匹配的字符串(分组匹配)列表
一种很好的方法是在Shell里面对XPath进行测试:

[python] view plain copy

  1. scrapy shell http://www.dmoz.org/Computers/Programming/Languages/Python/Books/ 

现在修改parse()方法看看如何提取数据到items里面去:

[python] view plain copy

  1. def parse(self, response): 
  2.       hxs = HtmlXPathSelector(response) 
  3.       sites = hxs.select('//ul/li') 
  4.       items = [] 
  5. for site in sites: 
  6.           item = DmozItem() 
  7.           item['title'] = site.select('a/text()').extract() 
  8.           item['link'] = site.select('a/@href').extract() 
  9.           item['desc'] = site.select('text()').extract() 
  10.           items.append(item) 
  11. return items 

实现PipeLine

PipeLine用来对Spider返回的Item列表进行保存操作,可以写入到文件、或者数据库等。

PipeLine只有一个需要实现的方法:process_item,例如我们将Item保存到一个文件中:

[python] view plain copy

  1. def __init__(self): 
  2. self.file = open('jingdong.txt', 'wb') 
  3. def process_item(self, item, spider): 
  4. self.file.write(item['title'] + '\t'+ item['link'] + '\t' + item['desc']+'\n') 

到现在,我们就完成了一个基本的爬虫的实现,可以输入下面的命令来启动这个Spider:

[python] view plain copy

  1. scrapy crawl dmoz.org 

Scrapy之URL解析与递归爬取:

前面介绍了Scrapy如何实现一个最简单的爬虫,但是这个Demo里只是对一个页面进行了抓取。在实际应用中,爬虫一个重要功能是”发现新页面”,然后递归的让爬取操作进行下去。

发现新页面的方法很简单,我们首先定义一个爬虫的入口URL地址,比如Scrapy入门教程中的start_urls,爬虫首先将这个页面的内容抓取之后,解析其内容,将所有的链接地址提取出来。这个提取的过程是很简单的,通过一个html解析库,将这样的节点内容提取出来,href参数的值就是一个新页面的URL。获取这个URL值之后,将其加入到任务队列中,爬虫不断的从队列中取URL即可。这样,只需要为爬虫定义一个入口的URL,那么爬虫就能够自动的爬取到指定网站的绝大多数页面。

当然,在具体的实现中,我们还需要对提取的URL做进一步处理:

1. 判断URL指向网站的域名,如果指向的是外部网站,那么可以将其丢弃
2. URL去重,可以将所有爬取过的URL存入数据库中,然后查询新提取的URL在数据库中是否存在,如果存在的话,当然就无需再去爬取了。

下面介绍一下如何在Scrapy中完成上述这样的功能。

我们只需要改写spider的那个py文件即可,修改parse()方法代码如下:

[python] view plain copy

  1. from scrapy.selector import HtmlXPathSelector 
  2. def parse(self, response): 
  3.     hxs = HtmlXPathSelector(response) 
  4.     items = [] 
  5.     newurls = hxs.select('//a/@href').extract() 
  6.     validurls = [] 
  7. for url in newurls: 
  8. #判断URL是否合法
  9. if true: 
  10.                         validurls.append(url) 
  11.         items.extend([self.make_requests_from_url(url).replace(callback=self.parse) for url in validurls]) 
  12.         sites = hxs.select('//ul/li') 
  13.         items = [] 
  14. for site in sites: 
  15.                 item = DmozItem() 
  16.                 item['title'] = site.select('a/text()').extract() 
  17.                 item['link'] = site.select('a/@href').extract() 
  18.                 item['desc'] = site.select('text()').extract() 
  19.                 items.append(item) 
  20. return items 

 

全文转载自: http://blog.csdn.net/zbyufei/article/details/7554322


  青春就应该这样绽放   游戏测试:三国时期谁是你最好的兄弟!!   你不得不信的星座秘密

相关 [开源 python 网络爬虫] 推荐:

开源Python网络爬虫框架Scrapy

- - 互联网实践
所谓网络爬虫,就是一个在网上到处或定向抓取数据的程序,当然,这种说法不够专业,更专业的描述就是,抓取特定网站网页的HTML数据. 不过由于一个网站的网页很多,而我们又不可能事先知道所有网页的URL地址,所以,如何保证我们抓取到了网站的所有HTML页面就是一个有待考究的问题了. 一般的方法是,定义一个入口页面,然后一般一个页面会有其他页面的URL,于是从当前页面获取到这些URL加入到爬虫的抓取队列中,然后进入到新新页面后再递归的进行上述的操作,其实说来就跟深度遍历或广度遍历一样.

网络爬虫

- - 四火的唠叨
文章系本人原创,转载请保持完整性并注明出自 《四火的唠叨》. 最近在写一个程序,去爬热门事件和热门关键词网站上的数据. 网络爬虫也叫做网络蜘蛛,是一种互联网机器人,把需要的网页撷取下来,组织成适当格式存储. 它是搜索引擎的重要组成部分,虽然从技术实现上来说,它的难度往往要小于对于得到的网页信息的处理.

开源Python UI框架:Kivy

- xin - 秀码趣 - ShowMuch.com
Kivy是一个可用以快速创建新颖用户界面应用的开源Python库,比如可以用它来创建多点触摸的应用程序,它具备跨平台特性,目前发行有Windows、MacOS、Linux以及Android版本. 作为一个开源框架,Kivy具备以下特性:A.百分百免费使用;B.基于 LGPL3协议 开源,对商业化应用友好;C.跨平台,支持Windows、MacOS、Linux以及Android;D.允许在不同的平台上运行同一套代码;E.稳定以及有完善的API文档;F.通过OpenGL ES 2.0对硬件进行加速;G.自然支持大部分的输入协议或者输入设备;H.基于Python的简单API……等等.

Webmagic 一个网络爬虫工具包

- - 行业应用 - ITeye博客
webmagic是一个开源的Java垂直爬虫框架,目标是简化爬虫的开发流程,让开发者专注于逻辑功能的开发. webmagic的核心非常简单,但是覆盖爬虫的整个流程,也是很好的学习爬虫开发的材料. 作者曾经进行过一年的垂直爬虫的开发,webmagic就是为了解决爬虫开发的一些重复劳动而产生的框架. web爬虫是一种技术,webmagic致力于将这种技术的实现成本降低,但是出于对资源提供者的尊重,webmagic不会做反封锁的事情,包括:验证码破解、代理切换、自动登录、抓取静态资源等.

2013年最好的Python开源项目汇总

- - ITeye资讯频道
2013年Python社区诞生了很多实用的开发工具,这些工具在一定程度上可以帮助你节省更多的时间. 本文为你汇总了这些工具,它们大部分都是开源的,你还可以通过源码来学习更多的Python开发知识. Radon是一个用于从源代码中计算出各种指标的Python工具,包括:. McCabe复杂性计算,也就是循环复杂度.

搜索引擎-信息检索实践—网络爬虫

- - CSDN博客互联网推荐文章
网络爬虫有两个任务:下载页面和发现URL. 1.从请求队列中取出URL,下载对应页面,解析页面,找到链接标签. 2.网络爬虫发现了没有遇到过的URL,将其加入请求队列. 网络爬虫使用礼貌策略(politeness policy):. 网络爬虫不会在特定的网络服务器上一次抓取多个页面,在同一个网络服务器的两次请求之间,网络爬虫会等待一定时间.

基于Nutch+Hadoop+Hbase+ElasticSearch的网络爬虫及搜索引擎

- - zzm
网络爬虫架构在Nutch+Hadoop之上,是一个典型的分布式离线批量处理架构,有非常优异的吞吐量和抓取性能并提供了大量的配置定制选项. 由于网络爬虫只负责网络资源的抓取,所以,需要一个分布式搜索引擎,用来对网络爬虫抓取到的网络资源进行实时的索引和搜索. 搜 索引擎架构在ElasticSearch之上,是一个典型的分布式在线实时交互查询架构,无单点故障,高伸缩、高可用.

【网络爬虫之JSOUP使用简介】解析一个body片断

- - CSDN博客编程语言推荐文章
假如你有一个HTML片断 (比如. 一个 div 包含一对 p 标签; 一个不完整的HTML文档) 想对它进行解析. 这个HTML片断可以是用户提交的一条评论或在一个CMS页面中编辑body部分. Jsoup.parseBodyFragment(String html)方法.. parseBodyFragment 方法创建一个空壳的文档,并插入解析过的HTML到 body元素中.

【网络爬虫之JSOUP使用简介】解析一个HTML字符串

- - CSDN博客编程语言推荐文章
来自用户输入,一个文件或一个网站的HTML字符串,你可能需要对它进行解析并取其内容,或校验其格式是否完整,或想修改它. jsonu能够帮你轻松解决这些问题. Jsoup.parse(String html) 方法或. Jsoup.parse(String html, String baseUri)示例代码:.

基于Python的开源人脸识别库:离线识别率高达99.38% | 机器之心

- -
仅用 Python 和命令行就可以实现人脸识别的库开源了. 该库使用 dlib 顶尖的深度学习人脸识别技术构建,在户外脸部检测数据库基准(Labeled Faces in the Wild benchmark)上的准确率高达 99.38%. 该项目是要构建一款免费、开源、实时、离线的网络 app,支持组织者使用人脸识别技术或二维码识别所有受邀人员.